K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
8 tháng 12 2021
a: Xét tứ giác AMBD có
I là trung điểm của AB
I là trung điểm của MD
Do đó: AMBD là hình bình hành
mà MA=MB
nên AMBD là hình thoi
21 tháng 12 2021
a: Xét tứ giác ADBM có
I là trung điểm của AB
I là trung điểm của DM
Do đó: ADBM là hình bình hành
mà AM=BM
nên ADBM là hình thoi
a) Xét tứ giác ADMB có
I là trung điểm của đường chéo AB(gt)
I là trung điểm của đường chéo MD(M và D đối xứng nhau qua I)
Do đó: ADMB là hình bình hành(Dấu hiệu nhận biết hình bình hành)
⇒AD//BM(Hai cạnh đối trong hình bình hành ADMB)
Ta có: ΔABC vuông tại A(gt)
mà AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)
nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
mà \(BM=CM=\dfrac{BC}{2}\)(M là trung điểm của BC)
nên AM=BM=CM
Hình bình hành ADBM có AM=BM(cmt)
nên ADBM là hình thoi(Dấu hiệu nhận biết hình thoi)
b) Sửa đề: E là giao điểm của AM và CD
Xét ΔABC có
M là trung điểm của BC(gt)
I là trung điểm của AB(gt)
Do đó: MI là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
⇒MI//AC và \(MI=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)
mà D∈MI và \(MI=\dfrac{MD}{2}\)(I là trung điểm của MD)
nên MD//AC và MD=AC
Xét tứ giác ACMD có
MD//AC(cmt)
MD=AC(cmt)
Do đó: ACMD là hình bình hành(Dấu hiệu nhận biết hình bình hành)
⇒Hai đường chéo AM và CD cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)
mà AM cắt CD tại E(gt)
nên E là trung điểm của AM
hay AE=EM(Đpcm)
c) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AB^2=BC^2-AC^2=5^2-4^2=9\)
hay AB=3(cm)
Ta có: \(MI=\dfrac{AC}{2}\)(cmt)
mà AC=4(cm)
nên \(MI=\dfrac{4}{2}=2\left(cm\right)\)
Xét ΔAMB có MI là đường cao ứng với cạnh AB(gt)
nên \(S_{ABM}=\dfrac{MI\cdot AB}{2}=\dfrac{2\cdot3}{2}=3\left(cm^2\right)\)