K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2021

undefined

a) Xét hai tam giác vuông ΔABE và ΔHBE có:

ABE = HBE (BE là tia phân giác giả thiết)

BE cạnh chung

⇒ ΔABE = ΔHBE (cạnh huyền - góc nhọn)

Vậy ΔABE = ΔHBE

b) AB = HB (2 cạnh tương ứng)

⇒ B thuộc đường trung trực của đoạn AH (1)

AE=HE (2 cạnh tương ứng)

⇒ E thuộc đường trung trực của đoạn AH (2)

Từ (1) và (2) ⇒ BE là đường trung trực của đoạn AH

Vậy BE là đường trung trực của đoạn AH

c) Xét hai tam giác vuông ΔAEK và ΔHEC có:

AEK = HEC (đối đỉnh)

AE = HE (cmt)

⇒ ΔAEK = ΔHEC (cạnh góc vuông - góc nhọn)

⇒ EK = EC (2 cạnh tương ứng) (3)

Vậy EK = EC

d) Ta có: ΔAEK vuông tại A

⇒ K<A

⇒ AE<KE (4)

Từ (3) và (4) ⇒ AE<EC

Vậy AE<EC

a) Xét ΔABE vuông tại A và ΔHBE vuông tại H có

BE chung

\(\widehat{ABE}=\widehat{HBE}\)(BE là tia phân giác của \(\widehat{ABH}\))

Do đó: ΔABE=ΔHBE(Cạnh huyền-góc nhọn)

b) Ta có: ΔABE=ΔHBE(cmt)

nên BA=BH(Hai cạnh tương ứng) và EA=EH(hai cạnh tương ứng)

Ta có: BA=BH(cmt)

nên B nằm trên đường trung trực của AH(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: EA=EH(cmt)

nên E nằm trên đường trung trực của AH(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra BE là đường trung trực của AH

28 tháng 10 2023

1. ΔABE = ΔHBE

Xét ΔABE và ΔHBE, ta có :

\widehat{BAE} =\widehat{BHE} =90^0 (gt)

\widehat{B_1} =\widehat{B_2}( BE là đường phân giác của góc HBA).

BE là cạnh chung.

=> ΔABE = ΔHBE

2. BE là đường trung trực của AH :

BA =BH và EA = EH (ΔABE = ΔHBE)

=> BE là đường trung trực của AH .

3. EK = EC

Xét ΔKAE và ΔCHE, ta có :

\widehat{KAE} =\widehat{CHE} =90^0 (gt)

EA = EH (cmt)

\widehat{E_1} =\widehat{E_2}( đối đỉnh).

=> ΔKAE và ΔCHE

=> EK = EC

4. EC > AC

Xét ΔKAE vuông tại A, ta có :

KE > AE (KE là cạnh huyền)

Mà : EK = EC (cmt)

=> EC > AC.

8 tháng 3 2022

1. ΔABE = ΔHBE

Xét ΔABE và ΔHBE, ta có :

 

\widehat{BAE} =\widehat{BHE} =90^0

 (gt)

 

 

\widehat{B_1} =\widehat{B_2}

( BE là đường phân giác BE).

 

BE là cạnh chung.

=> ΔABE = ΔHBE

 

2. BE là đường trung trực của AH :

BA =BH và EA = EH (ΔABE = ΔHBE)

=> BE là đường trung trực của AH .

3. EK = EC

Xét ΔKAE và ΔCHE, ta có :

 

\widehat{KAE} =\widehat{CHE} =90^0

 (gt)

 

EA = EH (cmt)

 

\widehat{E_1} =\widehat{E_2}

( đối đỉnh).

 

=> ΔKAE và ΔCHE

=> EK = EC

4. EC > AC

Xét ΔKAE vuông tại A, ta có :

KE > AE (KE là cạnh huyền)

Mà : EK = EC (cmt)

=> EC > AC.

8 tháng 3 2022

1. ΔABE = ΔHBE

Xét ΔABE và ΔHBE, ta có :

 

\widehat{BAE} =\widehat{BHE} =90^0

 (gt)

 

 

\widehat{B_1} =\widehat{B_2}

( BE là đường phân giác BE).

 

BE là cạnh chung.

=> ΔABE = ΔHBE

 

2. BE là đường trung trực của AH :

BA =BH và EA = EH (ΔABE = ΔHBE)

=> BE là đường trung trực của AH .

3. EK = EC

Xét ΔKAE và ΔCHE, ta có :

 

\widehat{KAE} =\widehat{CHE} =90^0

 (gt)

 

EA = EH (cmt)

 

\widehat{E_1} =\widehat{E_2}

( đối đỉnh).

 

=> ΔKAE và ΔCHE

=> EK = EC

4. EC > AC

Xét ΔKAE vuông tại A, ta có :

KE > AE (KE là cạnh huyền)

Mà : EK = EC (cmt)

=> EC > AC.

29 tháng 7 2016

1. ΔABE = ΔHBE

Xét ΔABE và ΔHBE, ta có :

\widehat{BAE} =\widehat{BHE} =90^0 (gt)

\widehat{B_1} =\widehat{B_2}( BE là đường phân giác BE).

BE là cạnh chung.

=> ΔABE = ΔHBE

2. BE là đường trung trực của AH :

BA =BH và EA = EH (ΔABE = ΔHBE)

=> BE là đường trung trực của AH .

3. EK = EC

Xét ΔKAE và ΔCHE, ta có :

\widehat{KAE} =\widehat{CHE} =90^0 (gt)

EA = EH (cmt)

\widehat{E_1} =\widehat{E_2}( đối đỉnh).

=> ΔKAE và ΔCHE

=> EK = EC

4. EC > AC

Xét ΔKAE vuông tại A, ta có :

KE > AE (KE là cạnh huyền)

Mà : EK = EC (cmt)

=> EC > AC.

5 tháng 2 2017

Bạn giúp mình bài này được ko ?undefined

20 tháng 8 2015

a) xet tam giac ABE vuong tai A va tam giac HBE vuong tai H ta co

BE=BE ( canh chung) ; goc ABE= goc HBE ( BE la  tia p/g goc B)

--> tam giac ABE= tam giac HBE ( ch=gn)

b) ta co

BA=BH ( tam giac ABE= tam giac HBE)

EA=EH( tam giac ABE= tam giac HBE)

==> BE la duong trung truc cua AH

c) xet tam giac EKA va tam giac ECH   ta co

AE=EH ( tam giacABE= tam giacHBE) ; goc EAK= goc EHC (=90); goc AEK= goc HEC ( 2 goc doi dinh )

--> tam giac EKA = tam giac ECH ( g--c-g)

-->  EK=EC (2 canh tuong ung )

d) tu diem E den duong thang HC ta co :

EH la duong vuong goc ( EH vuong goc BC)

EC la duong xien

-> EH<EC ( quan he duong xien duong vuong goc)

ma EH= AE ( tam giac ABE= tam giac HBE)

nen AE < EC

 

3 tháng 5 2017

Cho tam giác ABC vuông tại a ; đường phân giác BE. kẻ EH cuông góc BC(H thuộc BC) Gọi K là giao điểm của AB và HE . Chứng minh rằng  

1) Tam giác ABE=tam giác HBE

2) BE là đường trung trực của đoạn thẳng AH; Chứng minh BE vuông góc KC

3) AE<EC

16 tháng 8 2021

a) Xét tam giác BHA và BHE có:

BD chung

ˆABD^=ˆEBD^(vì BD là phân giác ˆBB^)

ˆBHA^=ˆBHE^(vì AH vuông góc với Bd tại H)

Tam giác BHA=tam giac BHE(c.g.v-g.n.k)

b) Xét Tam giác BDA và tam giác BDE có

BD chung

BA=BE( vì tam giac BHA = tam giac BHE( chứng minh phần a))

ABD=EBD( vì BD là phân giác củaˆBB^)

⇒⇒Tam giác BDA = Tam giác BDE(c.g.c)

⇒⇒ˆBEA^=ˆA^= 90o(2 canh tương ứng và ˆA^= 90o)

ED vuông góc với B tại E

c, AD = DE

DE < CD do tam giác CDE vuông tại E

=> AD < DC

d, DA= DE do tam giác ABD = tam giác EBD (Câu b)

=> tam giác DAE cân tại D (đn)

=> ^DAE = ^DEA (tc)            (1)

có : AK _|_ BC (gt) ; DE _|_ BC (câu b)

=> DE // AK 

=> ^DEA = ^EAK (slt) và (1)

=> ^DAE = ^EAK mà AE nằm giữa AD và AK 

=> AE là phân giác của ^CAK (đpcm)

16 tháng 8 2021

a) Vì EH ⊥ BC ( gt )

=> ΔBHE vuông tại H

Xét tam giác vuông BAE và tam giác vuông BHE có :

BE chung

∠B1 = ∠B2 ( BE là tia phân giác của ∠BAC )

=> ΔBAE = ΔBHE ( cạnh huyền - góc nhọn )

b) Gọi I là giao điểm của AH và BE

Xét ΔABI và ΔHBI có :

BA = BH (ΔBAE = ΔBHE (cmt)

∠B1 = ∠B2 ( BE là tia phân giác của ∠BAC )

BI chung

=> ΔABI = ΔHBI ( c.g.c )

=> ∠AIB = ∠AIH ( 2 góc tương ứng )

Mà ∠AIB + ∠AIH = 1800 ( 2 góc kề bù )

=> ∠AIB = ∠AIH = 900

=> BI ⊥ AH (1)

Ta có: IA = IH ( ΔABI = ΔHBI ( cmt )

Mà I nằm giữa hai điểm A và H (2)

=> I là trung điểm của AH ( 3)

Từ (1) (2) (3) => BI là trung trực của AH

Hay BE là trung trực của AH

c) Xét ΔKAE và ΔCHE có:

∠KAE = ∠CHE ( = 900 )

AE = HE ( ΔBAE = ΔBHE (cmt)

∠AEK = ∠HEC ( 2 góc đối đỉnh )

=> ΔKAE = ΔCHE ( g.c.g )

=> EK = EC ( 2 cạnh tương ứng )

5 tháng 5 2019

a, xét 2 tam giác vuông ABE và HBE có:

          BE cạnh chung

         \(\widehat{ABE}\)=\(\widehat{HBE}\)(gt)

=> tam giác ABE =tam giác HBE(CH-GN)

b) gọi O là giao điểm của BE và AH

xét tam giác OAB và tam giác OHB có:

          OB chung

         \(\widehat{OBA}\)=\(\widehat{OBH}\)(gt)

         AB=HB(theo câu a)

=> tam giác OAB=tam giác OHB(c.g.c)

=> OA=OH=> O là trung điểm của AH(1)

\(\widehat{AOB=\widehat{HOB}}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AOB=\widehat{HOB}}\)=90 độ => BO\(\perp\)AH(2)

từ (1) và (2) => BE là trung trực của AH

c)xét 2 tam giác vuông EAK và HEC có:

       AE=EH

      \(\widehat{AEK=\widehat{HEC}}\)(đối đỉnh)

=> tam giác EAK=tam giác HEC(cạnh góc vuông-góc nhọn)

=> EK=EC

d) trong tam giác vuông AEK có: AE<EK(vì cạnh huyền>cạnh góc vuông) mà EK=EC=> AE<EC

A B C E H K O

--thanks you very much--

15 tháng 8 2015

a) tam giac ABE = tam giac HBE ( c=g=c) : AB= BE .( gt) BE= BE ( canh chung)  goc ABE= goc HBE ( BE la tia phan giac)

b) ta co : BH=BA (gt)

                EA=EH ( tam giac ABE= tam giac HBE)

===? B va E nam tren duong trung truc cua AH

---> BE la duong trung truc cua AH

c) cm tam giac EKA= tam giac ECH ( g-c-g) : AE= EH , goc KAE= goc EHC (=90) , goc AEK = goc HEC ( 2 goc doi dinh)

d) tu diem Eden duong thang HC ta co

 EC la duong xien, EH la duong vuong goc ) EH vuong goc BC)

===> EH< EC ( quan he duong xien duong vuong goc)

ma EH=EA ( tam giac ABE = tam giac BEH )

nen AE < EC

 

29 tháng 6 2017

Vào đây tham khảo nhé bạn 

Câu hỏi của Lộc Trần Duy - Toán lớp 7 - Học toán với OnlineMath

....

Mây Phiêu Du
10 tháng 5 2016

a) Chứng minh ΔABE = ΔHBE : 

Xét ΔABE và ΔHBE, ta có :  (gt)

 ( BE là đường phân giác BE).

BE là cạnh chung. => ΔABE = ΔHBE
b). BE là đường trung trực của AH :

BA =BH và EA = EH (ΔABE = ΔHBE)

=> BE là đường trung trực của AH .
c)Chứng minh EK = EC

Xét ΔKAE và ΔCHE, ta có : (gt)

EA = EH (cmt)

 E1=E2 ( đối đỉnh).

=> ΔKAE và ΔCHE ( EK = EC (đpcm )

d) Chứng minh EC > AC

Xét ΔKAE vuông tại A, ta có: KE > AE (KE là cạnh huyền); Mà: EK = EC (cmt) => EC > AC.