Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét 2 tam giác vuông ABD và tam giác HBD có:
BD chung
\(\widehat{ABD=}\widehat{HBD}\)(BD p/g của B)
\(\Rightarrow\)Tam giác HBD=Tam giác ABD(cạnh huyền-góc nhọn)
b,Vì Tam giác HBD=Tam giác ABD(cạnh huyền-góc nhọn)
\(\Rightarrow AD=DH\)
mà DH<DC(vì trong tam giác vuông cạnh góc vuông luôn luôn bé hơn cạnh huyền)
\(\Rightarrow\)AD<DC
c, Ta có AD=DH(câu a) \(\Rightarrow AD^2=DH^2\)
AK=HC(gt) \(\Rightarrow\)\(AK^2=HC^2\)
\(\Rightarrow KD^2=DC^2\Rightarrow KD=DC\)
Vậy tam giác DKC là tam giác cân tại D
Hok tốt
a) Xét hai tam giác vuông ABD và HBD có: BD là cạnh chung
DA = DH (D nằm trên tia phân giác của góc B)
⇒ΔABD=ΔHBD⇒ΔABD=ΔHBD (cạnh huyền – cạnh góc vuông)
b) Từ câu a) có ΔABD=ΔHBD⇒AB=BHΔABD=ΔHBD⇒AB=BH
Suy ra, ΔBKCΔBKC cân tại B.
Khi đó, BD vừa là phân giác, vừa là đường cao xuất phát từ đỉnh B ⇒D⇒D là trực tâm của ΔBKC.ΔBKC.
Mặt khác, ΔCAK=ΔKHC(c–g–c)ΔCAK=ΔKHC(c–g–c)
⇒KH⊥BC⇒KH⊥BC
⇒⇒ KH là đường cao kẻ từ đỉnh K của .. nên KH phải đi qua trực tâm H.
Vậy ba điểm K, D, H thẳng hàng.
a: Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔABD=ΔHBD
b: Ta có: ΔABD=ΔHBD
nên DA=DH
mà DH<DC
nên DA<DC
c: Xét ΔDAK vuông tại A và ΔDHC vuông tại H có
DA=DH
AK=HC
Do đó: ΔDAK=ΔDHC
Suy ra: DK=DC
hay ΔDKC cân tại D
d: Ta có: ΔDAK=ΔDHC
nên \(\widehat{ADK}=\widehat{HDC}\)
\(\Leftrightarrow\widehat{HDC}+\widehat{KDC}=180^0\)
hay H,D,K thẳng hàng
a) Xét tgiac ABD và EBD có:
+ AB = BE
+ BD chung
+ góc ABD = EBD
=> Tgiac ABD = EBD (c-g-c)
=> đpcm
b) Tgiac ABD = EBD (cmt) => AD = DE (hai cạnh t/ứng)
Xét tgiac ADE có AD = DE => Tgiac ADE cân tại D
=> đpcm
c) AH \(\perp\)BC, DE\(\perp\)BC => AH\(//\)DE
=> góc HAE = AED (2 góc SLT do AH\(//\)DE)
Mà tgiac ADE cân tại D (cmt) => góc AED = DAE
=> góc HAE = DAE
=> AE là tia pgiac góc HAC (đpcm)
d) Xét tgiac ADK và EDC có:
+ góc DAK = DEC = 90o
+ góc ADK = EDC (2 góc đối đỉnh)
+ AD = DE (do tgiac ABD = EBD)
=> Tgiac ADK = EDC (g-c-g)
=> AK = EC và KD = DC (2 cạnh t/ứng)
=> Tgiac KDC cân tại K => Góc DCK = (180o- góc KDC) /2
Tgiac AED cân tại D => góc EAD = (180o- góc ADE) /2
Mà góc ADE = KDC (2 góc đối đỉnh) => góc DCK = EAD
Mà 2 góc này SLT => AE \(//\)KC
=> đpcm
a). Xét ΔABD và ΔBCE có: ∠ ADB = ∠ AEC = 90º (gt)
BA = AC (gt)
∠BAC chung
⇒ ΔABD = ΔACE (cạnh huyền – góc nhọn)
b). ΔABD = ΔACE ⇒ ∠ABD = ∠ACE (hai góc tương ứng)
mặt khác: ∠ABC = ∠ACB (ΔABC cân tại A )
⇒ ∠ABC – ∠ABD = ∠ACB – ∠ACE
=> ∠HBC = ∠HCB
⇒ ΔBHC là tam giác cân
c). ΔHDC vuông tại D nên HD <HC
mà HB = HC (ΔAIB cân tại H)
=> HD < HB
d). Gọi I là giao điểm của BN và CM
Xét Δ BNH và Δ CMH có:
BH = CH (Δ BHC cân tại H)
∠ BHN = CHM(đối đỉnh)
NH = HM (gt)
=> Δ BNH = Δ CMH (c.g.c) ⇒ ∠HBN = ∠ HCM
Lại có: ∠ HBC = ∠ HCB (Chứng minh câu b)
⇒ ∠HBC + ∠HBN = ∠HCB + ∠HCM => ∠IBC = ∠ICB
⇒ IBC cân tại I ⇒ IB = IC (1)
Mặt khác ta có: AB = AC (Δ ABC cân tại A) (2)
HB = HC (Δ HBC cân tại H) (3)
Từ (1); (2) và (3) => 3 điểm I; A; H cùng nằm trên đường trung trực của BC
=> I; A; H thẳng hàng => các đường thẳng BN; AH; CM đồng quy
Gõ nhanh thế! Nguyệt Thần ra câu hỏi 19 phút trước là 5 phút sau có câu trả lời
a) Xét tam giác vuông ABC, áp dụng định lý Pi-ta-go ta có:
\(BC^2=AB^2+AC^2=6^2+8^2=100\)
\(\Rightarrow BC=10\left(cm\right)\)
b) Xét tam giác BDC có AC là đường cao đồng thời trung tuyến nên BDC là tam giác cân tại C.
c) Xét tam giác cân BDC có CA là đường cao nên đồng thời là phân giác.
Vậy thì \(\widehat{HCA}=\widehat{KCA}\)
Xét tam giác vuông AHC và tam giác vuông AKC có:
Cạnh huyền AC chung
\(\widehat{HCA}=\widehat{KCA}\)
\(\Rightarrow\Delta AHC=\Delta AKC\) (Cạnh huyền - góc nhọn)
d) Do \(\Delta AHC=\Delta AKC\Rightarrow HC=KC\)
Suy ra tam giác HKC cân tại C. Vậy thì phân giác CA đồng thời là đường cao, hay \(CA\perp HK\)
Lại có \(CA\perp BD\) nên HK // BC.
a) Xét tam giác ABD vuông tại A
tam giác HBD vuông tại H, ta có
Góc ABD = góc HBD ( BD là tia phân giác góc B)
BD: cạnh chung
=) Tam giác ABD = tam giác HBD (cạnh huyền - góc nhọn)
c) Xét tam giác ADK và tam giác HDC có:
AD = HD ( tam giác ABD = tam giác HBD)
Góc KAD = góc CHD = 90 độ
Góc ADK = góc HDC (đối đỉnh)
=) Tam giác ADK = tam giác HDC ( góc-cạnh-góc)
=) DK = DC (2 cạnh tương ứng)
=) Tam giác DKC cân tại D
.