K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét 2 tam giác vuông ABD và tam giác HBD có:

BD chung

\(\widehat{ABD=}\widehat{HBD}\)(BD p/g của B)

\(\Rightarrow\)Tam giác HBD=Tam giác ABD(cạnh huyền-góc nhọn)

b,Vì Tam giác HBD=Tam giác ABD(cạnh huyền-góc nhọn)

\(\Rightarrow AD=DH\)

mà DH<DC(vì trong tam giác vuông cạnh góc vuông luôn luôn bé hơn cạnh huyền)

\(\Rightarrow\)AD<DC

c, Ta có AD=DH(câu a) \(\Rightarrow AD^2=DH^2\)

AK=HC(gt) \(\Rightarrow\)\(AK^2=HC^2\)

\(\Rightarrow KD^2=DC^2\Rightarrow KD=DC\)

Vậy tam giác DKC là tam giác cân tại D

Hok tốt

Hình đấy nhá

Quên mất !

Hok tốt

a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H co

BD chung

góc ABD=góc HBD

=>ΔBAD=ΔBHD

b: DA=DH

DH<DC

=>DA<DC

c: Xét ΔBHK vuông tại H và ΔBAC vuông tại A có

BH=BA

góc HBK chung

=>ΔBHK=ΔBAC

=>BK=BC

=>ΔBKC can tại B

mà BI là trung tuyến

nên BI là phân giác của góc KBC

mà BD là phân giác

nên B,D,I thẳng hàng

27 tháng 4 2023

thanks

 

5 tháng 8 2023

loading...

a) Xét \(\Delta\)\(\text{ }\text{ABD}\) và \(\text{ΔHBD}\)

\(\widehat{\text{BAD}}=\widehat{\text{BHD}}=\text{90}^{\text{o}}\)

\(\text{BD}\) là cạnh chung

\(\widehat{\text{ABD}}=\widehat{\text{HBD}}\) (do \(\text{BD}\) là tia phân giác của \(\widehat{\text{ABD}}\) )

Vậy \(\text{ΔABD = ΔHBD}\) (cạnh huyền – góc nhọn)

___________________________________________________

b) Từ \(\text{ΔABD = ΔHBD}\) (câu a) suy ra\(\text{ AD = HD}\) (hai cạnh tương ứng)

Xét \(\text{ΔDHC}\) vuông tại \(\text{H}\) có \(\text{DC}\) là cạnh huyền nên \(\text{DC}\) là cạnh lớn nhất

Do đó \(\text{DC}\)\(>\text{HD}\) nên \(\text{DC}>AD\) 

________________________________________________________

c) Xét \(\text{ΔBKC}\) có \(\text{CA ⊥ BK, KH ⊥ BC}\) và \(\text{CA}\) cắt \(\text{KH}\) tại \(\text{D}\)

Do đó \(\text{D}\) là trực tâm của \(\text{BKC}\), nên \(\text{BD ⊥ KC (1)}\)

Gọi \(\text{J}\) là giao điểm của \(\text{BD và KC}\)

Xét \(\text{ΔBKJ}\) và \(\text{ΔBCJ}\) có

\(\widehat{\text{BJK}}=\widehat{BJC}=90^o\)

\(\text{BJ}\) là cạnh chung

\(\widehat{\text{KBJ}}=\widehat{\text{CBJ}}\)  (do \(\text{BJ}\) là tia phân giác của \(\widehat{\text{ABD}}\) )

\(\Rightarrow\) \(\text{ΔBKJ = ΔBCJ}\) (cạnh góc vuông – góc nhọn kề)

Suy ra\(\text{ KJ = CJ}\) (hai cạnh tương ứng)

Hay \(\text{J}\) là trung điểm của \(\text{KC}\)

theo bài ra : \(\text{I}\) là trung điểm của \(\text{KC}\) nên \(\text{I}\) và \(\text{J}\) trùng nhau.

Vậy \(\text{B, D, I}\) thẳng hàng

 

13 tháng 4 2019

a) Xét hai tam giác vuông ABD và HBD có: BD là cạnh chung

DA = DH (D nằm trên tia phân giác của góc B)

⇒ΔABD=ΔHBD⇒ΔABD=ΔHBD (cạnh huyền – cạnh góc vuông)

b) Từ câu a) có ΔABD=ΔHBD⇒AB=BHΔABD=ΔHBD⇒AB=BH

Suy ra, ΔBKCΔBKC cân tại B.

Khi đó, BD vừa là phân giác, vừa là đường cao xuất phát từ đỉnh B ⇒D⇒D là trực tâm của ΔBKC.ΔBKC.

Mặt khác, ΔCAK=ΔKHC(c–g–c)ΔCAK=ΔKHC(c–g–c)

⇒KH⊥BC⇒KH⊥BC

⇒⇒ KH là đường cao kẻ từ đỉnh K của .. nên KH phải đi qua trực tâm H.

Vậy ba điểm K, D, H thẳng hàng.