K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 4. Cho tam giác ABC vuông tại A, đường cao AH. BIẾT AC=4cm, BC-5cm, góc ABC=30 a) Tính độ dài AB, AH b)Từ H lần lượt dùng các đường thẳng song song với AB và AC các đường thẳng này cắt AB tại E và AC tại F. Chứng minh BE. HC=HB.HF. Bài 5.Cho tam giác ABC vuông tại , có đường cao AH. Biết rằng AC Son AB=ACH a) Tính cạnh AH HB HC và BC b) Gọi p là hình chiếu của H xuống 48. Chứng minh rằng AP AR MW...
Đọc tiếp

Bài 4. Cho tam giác ABC vuông tại A, đường cao AH. BIẾT AC=4cm, BC-5cm, góc ABC=30 a) Tính độ dài AB, AH b)Từ H lần lượt dùng các đường thẳng song song với AB và AC các đường thẳng này cắt AB tại E và AC tại F. Chứng minh BE. HC=HB.HF. Bài 5.Cho tam giác ABC vuông tại , có đường cao AH. Biết rằng AC Son AB=ACH a) Tính cạnh AH HB HC và BC b) Gọi p là hình chiếu của H xuống 48. Chứng minh rằng AP AR MW HAN Bài 6 Cho tam giác tê vuông tại 4 có đường cao 01 chia cạnh huyện 00 thành hai đoạn hồi 6cm và Htman. a) Tính độ dài các đoạn AH AB, AC, b) Gọi K là trung điểm của C. Ke M8 L BM(K = BM) Chứng minh: BK BM = BH BK Bài 7.Cho tam giác ABC vuông tại 4, đường cao AH. Biết AB = 12cm: BC = 200m. a) Tính độ dài AC BH và III. b) Ching minh HB.HC AC-HC Bài 8 Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 9cm, BC = 15cm. a) Tính độ dài AC và AH. bị Ke tia phân giác. 4 của BIC (M = BC). Tính diện tích tam giác ABM (làm tròn đến chữ thập phân thứ nhất)

1

Bài 7: Sửa đề; AB=12cm; BC=20cm

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=20^2-12^2=256\)

=>AC=16(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2\)

=>\(BH\cdot20=12^2=144\)

=>BH=144/20=7,2(cm)

b: ΔAHC vuông tại H

=>\(AH^2+HC^2=AC^2\)

=>\(AH^2=AC^2-HC^2\left(1\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(HB\cdot HC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(HB\cdot HC=AC^2-HC^2\)

Bài 8:

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=15^2-9^2=144\)

=>\(AC=\sqrt{144}=12\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2\)

=>\(BH\cdot15=9^2=81\)

=>BH=81/15=5,4(cm)

 b: Sửa đề: Kẻ tia phân giác AM của góc BAC. Tính diện tích tam giác ABM

Xét ΔABC có AM là phân giác

nên \(\dfrac{MB}{MC}=\dfrac{AB}{AC}=\dfrac{9}{12}=\dfrac{3}{4}\)

=>\(\dfrac{MC}{MB}=\dfrac{4}{3}\)

=>\(\dfrac{MC+MB}{MB}=\dfrac{4}{3}+1=\dfrac{7}{3}\)

=>\(\dfrac{BC}{MB}=\dfrac{7}{3}\)

=>\(\dfrac{MB}{BC}=\dfrac{3}{7}\)

=>\(\dfrac{S_{AMB}}{S_{ABC}}=\dfrac{3}{7}\)

=>\(S_{AMB}=\dfrac{3}{7}\cdot S_{ABC}=\dfrac{3}{7}\cdot\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{3}{14}\cdot9\cdot12\)

=>\(S_{AMB}=\dfrac{162}{7}\simeq23,1\left(cm^2\right)\)

14 tháng 10 2023

a: Bạn ghi lại đề nha bạn

b: ΔBAC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AB=\sqrt{18^2-6.5^2}=\dfrac{7}{2}\sqrt{23}\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2\)

=>\(BH=\dfrac{281.75}{18}=\dfrac{1127}{72}\left(cm\right)\)

Xét ΔABC có HI//AC

nên \(\dfrac{HI}{AC}=\dfrac{BH}{BC}\)

=>\(\dfrac{HI}{6.5}=\dfrac{1127}{72}:18=\dfrac{1127}{1296}\)

=>\(HI\simeq5,65\left(cm\right)\)

ΔHAB vuông tại H có HI là đường cao

nên \(BI\cdot BA=BH^2\)

=>\(BI=\left(\dfrac{1127}{72}\right)^2:\dfrac{7}{2}\sqrt{23}=14,6\left(cm\right)\)

\(AI=AB-BI=3.5\sqrt{23}-14.6\simeq2,19\left(cm\right)\)

\(S_{AIHC}=\dfrac{1}{2}\left(HI+AC\right)\cdot AI\)

\(=\dfrac{1}{2}\cdot2.19\cdot\left(6.5+5.65\right)\simeq13,3\left(cm^2\right)\)

a: Xét ΔBAE có BA=BE

nên ΔBAE cân tại B

mà \(\widehat{B}=60^0\)

nên ΔABE đều

\(\Leftrightarrow AH=\dfrac{a\sqrt{3}}{2}\)

11 tháng 10 2023

a: ΔABC vuông tại A

=>\(BC^2=AB^2+AC^2\)

=>\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\BH\cdot BC=AB^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=\dfrac{9\cdot12}{15}=7.2\left(cm\right)\\BH=\dfrac{9^2}{15}=5.4\left(cm\right)\end{matrix}\right.\)

b:

ΔAHB vuông tại H có HD là đường cao

nên \(HD\cdot AB=HA\cdot HB\)

ΔAHC vuông tại H có HE là đường cao

nên \(HE\cdot AC=HA\cdot HC\)

 \(HD\cdot AB+HE\cdot AC\)

\(=HA\cdot HB+HA\cdot HC=HA\cdot\left(HB+HC\right)\)

\(=HA\cdot BC=AB\cdot AC\)

c: Xét tứ giác ADHE có \(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

ΔABC vuông tại A có AM là trung tuyến

nên AM=MB=MC

\(\widehat{IEA}+\widehat{IAE}=\widehat{DEA}+\widehat{IAC}\)

\(=\widehat{DHA}+\widehat{MCA}\)

\(=\widehat{ABC}+\widehat{ACB}=90^0\)

=>AM vuông góc DE tại I

ΔADE vuông tại A có AI là đường cao

nên \(\dfrac{1}{AI^2}=\dfrac{1}{AE^2}+\dfrac{1}{AD^2}\)