Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 7: Sửa đề; AB=12cm; BC=20cm
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=20^2-12^2=256\)
=>AC=16(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot BC=BA^2\)
=>\(BH\cdot20=12^2=144\)
=>BH=144/20=7,2(cm)
b: ΔAHC vuông tại H
=>\(AH^2+HC^2=AC^2\)
=>\(AH^2=AC^2-HC^2\left(1\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(HB\cdot HC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(HB\cdot HC=AC^2-HC^2\)
Bài 8:
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=15^2-9^2=144\)
=>\(AC=\sqrt{144}=12\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot BC=BA^2\)
=>\(BH\cdot15=9^2=81\)
=>BH=81/15=5,4(cm)
b: Sửa đề: Kẻ tia phân giác AM của góc BAC. Tính diện tích tam giác ABM
Xét ΔABC có AM là phân giác
nên \(\dfrac{MB}{MC}=\dfrac{AB}{AC}=\dfrac{9}{12}=\dfrac{3}{4}\)
=>\(\dfrac{MC}{MB}=\dfrac{4}{3}\)
=>\(\dfrac{MC+MB}{MB}=\dfrac{4}{3}+1=\dfrac{7}{3}\)
=>\(\dfrac{BC}{MB}=\dfrac{7}{3}\)
=>\(\dfrac{MB}{BC}=\dfrac{3}{7}\)
=>\(\dfrac{S_{AMB}}{S_{ABC}}=\dfrac{3}{7}\)
=>\(S_{AMB}=\dfrac{3}{7}\cdot S_{ABC}=\dfrac{3}{7}\cdot\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{3}{14}\cdot9\cdot12\)
=>\(S_{AMB}=\dfrac{162}{7}\simeq23,1\left(cm^2\right)\)
a: Bạn ghi lại đề nha bạn
b: ΔBAC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AB=\sqrt{18^2-6.5^2}=\dfrac{7}{2}\sqrt{23}\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot BC=BA^2\)
=>\(BH=\dfrac{281.75}{18}=\dfrac{1127}{72}\left(cm\right)\)
Xét ΔABC có HI//AC
nên \(\dfrac{HI}{AC}=\dfrac{BH}{BC}\)
=>\(\dfrac{HI}{6.5}=\dfrac{1127}{72}:18=\dfrac{1127}{1296}\)
=>\(HI\simeq5,65\left(cm\right)\)
ΔHAB vuông tại H có HI là đường cao
nên \(BI\cdot BA=BH^2\)
=>\(BI=\left(\dfrac{1127}{72}\right)^2:\dfrac{7}{2}\sqrt{23}=14,6\left(cm\right)\)
\(AI=AB-BI=3.5\sqrt{23}-14.6\simeq2,19\left(cm\right)\)
\(S_{AIHC}=\dfrac{1}{2}\left(HI+AC\right)\cdot AI\)
\(=\dfrac{1}{2}\cdot2.19\cdot\left(6.5+5.65\right)\simeq13,3\left(cm^2\right)\)
a: Xét ΔBAE có BA=BE
nên ΔBAE cân tại B
mà \(\widehat{B}=60^0\)
nên ΔABE đều
\(\Leftrightarrow AH=\dfrac{a\sqrt{3}}{2}\)
a: ΔABC vuông tại A
=>\(BC^2=AB^2+AC^2\)
=>\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\BH\cdot BC=AB^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=\dfrac{9\cdot12}{15}=7.2\left(cm\right)\\BH=\dfrac{9^2}{15}=5.4\left(cm\right)\end{matrix}\right.\)
b:
ΔAHB vuông tại H có HD là đường cao
nên \(HD\cdot AB=HA\cdot HB\)
ΔAHC vuông tại H có HE là đường cao
nên \(HE\cdot AC=HA\cdot HC\)
\(HD\cdot AB+HE\cdot AC\)
\(=HA\cdot HB+HA\cdot HC=HA\cdot\left(HB+HC\right)\)
\(=HA\cdot BC=AB\cdot AC\)
c: Xét tứ giác ADHE có \(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
ΔABC vuông tại A có AM là trung tuyến
nên AM=MB=MC
\(\widehat{IEA}+\widehat{IAE}=\widehat{DEA}+\widehat{IAC}\)
\(=\widehat{DHA}+\widehat{MCA}\)
\(=\widehat{ABC}+\widehat{ACB}=90^0\)
=>AM vuông góc DE tại I
ΔADE vuông tại A có AI là đường cao
nên \(\dfrac{1}{AI^2}=\dfrac{1}{AE^2}+\dfrac{1}{AD^2}\)