Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AB^2=10^2-8^2=36\)
hay AB=6(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AB\cdot AC=AH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{36}{10}=3.6\left(cm\right)\\CH=\dfrac{64}{10}=6.4\left(cm\right)\\AH=\dfrac{6\cdot8}{10}=4.8\left(cm\right)\end{matrix}\right.\)
Ta có: \(\dfrac{AB}{AC}=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{1}{16}\)
hay HC=16HB
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow16HB^2=148\)
\(\Leftrightarrow HB=\dfrac{\sqrt{37}}{2}\)
\(\Leftrightarrow HC=8\sqrt{37}\)
\(\Leftrightarrow BC=\dfrac{17\sqrt{37}}{2}\left(cm\right)\)
a, \(AB=\sqrt{BC^2-AC^2}=10\sqrt{5}\left(cm\right)\)
\(\cos B=\dfrac{AC}{BC}=\dfrac{2}{3}\approx48^0\Rightarrow\widehat{B}\approx48^0\\ \Rightarrow\widehat{C}=90^0-\widehat{B}\approx90^0-48^0=42^0\)
b, Áp dụng HTL: \(\left\{{}\begin{matrix}AH=\dfrac{AB\cdot AC}{BC}=\dfrac{20\sqrt{5}}{30}\left(cm\right)\\CH=\dfrac{AC^2}{BC}=\dfrac{40}{3}\left(cm\right)\end{matrix}\right.\)
Áp dung hệ thức lượng trong tam giác vuông ABC :
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{AB^2+AC^2}{AB^2\cdot AC^2}\)
\(\Leftrightarrow AH=\dfrac{\sqrt{AB^2+AC^2}}{AB\cdot AC}\)
\(\Leftrightarrow AH=\dfrac{\sqrt{AB^2+\left(\dfrac{4AB}{3}\right)^2}}{AB\cdot\dfrac{4AB}{3}}=\dfrac{5AB}{4}\)
\(\Rightarrow AB=\dfrac{4\cdot\dfrac{12}{5a}}{5}=\dfrac{48}{25}a\)
\(BC=\dfrac{AB\cdot AC}{AH}=\dfrac{AB\cdot\dfrac{4}{3}AB}{\dfrac{5}{4}\cdot AB}=\dfrac{16}{15}AB=\dfrac{16}{15}\cdot\dfrac{48}{25}\cdot a=2.048a\)
Bài 2:
b: \(AH\cdot\left(\cot\widehat{B}+\cot\widehat{C}\right)\)
\(=AH\cdot\left(\dfrac{BH}{AH}+\dfrac{CH}{AH}\right)\)
\(=AH\cdot\dfrac{BC}{AH}=BC\)
Bài 2:
Xét ΔABC có AD là đường phân giác ứng với cạnh BC
nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)
\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{1}{3}\)
\(\Leftrightarrow\dfrac{BH}{CH}=\dfrac{1}{9}\)
Gọi HC là x (x>0)
Xét \(\Delta ABC\) vuông tại A, đường cao AH:
AC2=HC.BC (ĐL1)
\(\Rightarrow\) AC2=x.(x+BH)
\(\Rightarrow\) 256=x2+9x
\(\Rightarrow\) x2+9x-256=0 (1)
Giải pt (1) ta được x\(\approx\) 12,12
Suy ra HC\(\approx\)12,12
Suy ra BC\(\approx\) 21,12
Suy ra AB\(\approx\) 13,79
Suy ra AH\(\approx\) 10,45
Xét ΔAHB vuông tại H có \(tanB=\dfrac{AH}{HB}\)
=>\(\dfrac{2.4}{HB}=\dfrac{3}{4}\)
=>\(HB=2.4\cdot\dfrac{4}{3}=3,2\left(cm\right)\)
ΔABH vuông tại H
=>\(HA^2+HB^2=AB^2\)
=>\(AB^2=3,2^2+2,4^2=16\)
=>\(AB=\sqrt{16}=4\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)
=>\(BC=\dfrac{4^2}{3,2}=5\left(cm\right)\)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=5^2-4^2=9\)
=>\(AC=\sqrt{9}=3\left(cm\right)\)
Chu vi tam giác ABC là:
3+4+5=12(cm)