K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: Xét ΔABH vuông tại H và ΔCAH vuông tại H có

góc HAB=góc HCA

=>ΔABH đồng dạng vơi ΔCAH

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó: ΔABC\(\sim\)ΔHBA

b: ta có: ΔABC\(\sim\)ΔHBA

nên BA/BH=BC/BA

hay \(BA^2=BH\cdot BC\)

10 tháng 5 2022

a.Xét tam giác ABC và tam giác HBA, có:

^B: chung

^BAC = ^BHA = 90 độ

Vậy tam giác ABC đồng dạng tam giác HBA (g.g)

b.\(\rightarrow\dfrac{AB}{HB}=\dfrac{BC}{AB}\)

\(\Leftrightarrow AB^2=BH.BC\left(đfcm\right)\) (1)

c.Áp dụng định lý pitago \(\Rightarrow BC=\sqrt{6^2+10^2}=2\sqrt{34}\left(cm\right)\)

(1) \(\Leftrightarrow6^2=2\sqrt{34}BH\)

\(\Leftrightarrow BH=\dfrac{9\sqrt{34}}{17}\left(cm\right)\)

Áp dụng định lý pitago trong tam giác ABH \(\Rightarrow AH=\sqrt{6^2-\left(\dfrac{9\sqrt{34}}{17}\right)^2}=\dfrac{15\sqrt{34}}{17}\left(cm\right)\)

26 tháng 6 2021

1.Xét ΔHBA và ΔABC có:

góc AHB=góc BAC=90o

Góc B chung 

=> ΔABC đồng dạng ΔHBA (g.g)

=>\(\dfrac{BA}{BH}=\dfrac{BC}{BA}\)\(\Rightarrow BA.BA=BH.BC\)

2. Xét ΔHBI và ΔABE có:

góc ABE=IBH (Vì BE là tia phân giác của góc B, I nằm trên BE)

góc BAE=góc IHB=90o

=>ΔHBI đồng dạng ΔABE (g.g)

 

 

3 tháng 8 2021

cảm ơn bn

NV
19 tháng 3 2023

a.

Xét hai tam giác vuông ABC và HBA có:

\(\left\{{}\begin{matrix}\widehat{HBA}\text{ chung}\\\widehat{BAC}=\widehat{BHA}=90^0\end{matrix}\right.\)

\(\Rightarrow\Delta ABC\sim\Delta HBA\left(g.g\right)\)

b.

Do BD là phân giác góc B, áp dụng định lý phân giác cho tam giác ABC:

\(\dfrac{AD}{DC}=\dfrac{AB}{BC}\) (1)

Do BI là phân giác góc B, áp dụng định lý phân giác cho tam giác ABH:

\(\dfrac{HI}{AI}=\dfrac{BH}{AB}\) (2)

Mặt khác, từ câu a do \(\Delta ABC\sim\Delta HBA\Rightarrow\dfrac{AB}{BH}=\dfrac{BC}{BA}\Rightarrow\dfrac{AB}{BC}=\dfrac{BH}{AB}\) (3)

(1);(2);(3) \(\Rightarrow\dfrac{HI}{IA}=\dfrac{AD}{DC}\)

NV
19 tháng 3 2023

loading...

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạg với ΔHBA

b: Sửa đề: S ABC/S HBA=25/9

=>AB/HB=BC/BA=AC/HA=5/3

=>15/HB=BC/15=AC/HA=5/3

=>HB=9cm; BC=25cm

AC=căn 25^2-15^2=20cm

AH=15*20/25=12cm

Giải thích các bước giải:

a. N là trung điểm AC; P là trung điểm CH⇒NP là đường trung bình của ΔACH ⇒NP || AH và NP=AH/2

tương tự: MQ là đường trung bình ΔABH ⇒MQ || AH và MQ=AH/2 

⇒MQ || NP (cùng || AH)

b. theo câu a⇒NP và MQ ⊥ BC (vì AH ⊥ BC) 

M là trung điểm AB, N là trung điểm AC⇒MN là đường trung bình ΔABC

⇒MN || BC và MN=BC/2⇒MN ⊥ MQ và MN ⊥ NP 

⇒MNPQ là hình chữ nhật

c. để MNPQ là hình vuông ⇔MN=MQ=NP=QP 

mà MQ=AH/2  và  MN=BC/2 ⇒AH=BC 

12 tháng 10 2021

a. N là trung điểm AC; P là trung điểm CH⇒NP là đường trung bình của ΔACH ⇒NP || AH và NP=AH/2

tương tự: MQ là đường trung bình ΔABH ⇒MQ || AH và MQ=AH/2 

⇒MQ || NP (cùng || AH)

b. theo câu a⇒NP và MQ ⊥ BC (vì AH ⊥ BC) 

M là trung điểm AB, N là trung điểm AC⇒MN là đường trung bình ΔABC

⇒MN || BC và MN=BC/2⇒MN ⊥ MQ và MN ⊥ NP 

⇒MNPQ là hình chữ nhật

c. để MNPQ là hình vuông ⇔MN=MQ=NP=QP 

mà MQ=AH/2  và  MN=BC/2 ⇒AH=BC 

NV
10 tháng 3 2023

Xét hai tam giác vuông BHA và BAC có:

\(\left\{{}\begin{matrix}\widehat{B}\text{ chung}\\\widehat{BHA}=\widehat{BAC}=90^0\end{matrix}\right.\)

\(\Rightarrow\Delta BHA\sim\Delta BAC\left(g.g\right)\)

Xét ΔBHA và ΔBAC có:

\(\widehat{ABC}chung\)

\(\widehat{BHA}=\widehat{BAC}\left(=90^o\right)\)

⇒ ΔBHA ∾ ΔBAC ( g.g )

loading...

 

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

=>ΔABC đồng dạng với ΔHAC

\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot AH\cdot BC\)

=>AB*AC=AH*CB

b: Xét ΔABC vuông tại A có AH là đường cao

nên AC^2=HC*BC

c: Xét ΔABC vuông tại A có AH là đường cao

nên AH^2=HB*HC