Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AMDN có góc AMD=góc AND=góc MAN=90 độ
nên AMDN là hình chữ nhật
b: Xét tứ giác NKIM có
D là trung điểm của NI
D là trung điểm của KM
Do đó: NKIM là hình bình hành
mà NI vuông góc với KM
nên NKIM là hình thoi
c: Xét ΔABC có DN//AB
nên DN/AB=CN/CA=CD/CB
=>CN=1/2CA
hay N là trung điểm của AC
Xét ΔABC có DM//AC
nên BM/BA=BD/BC=1/2
hay BM=1/2BA
=>M là trung điểm của AB
Ta có: ΔAHB vuông tại H
mà HM là đường trung tuyến
nên MA=MH
Ta có: ΔAHC vuông tại H
mà HN là đừog trung tuyến
nên HN=AN
Xét ΔMAN và ΔMHN có
MA=MH
AN=HN
MN chung
Do đó: ΔMAN=ΔMHN
Suy ra:góc MHN=90 độ
a) Xét tứ giác ADHE có:
\(\left\{{}\begin{matrix}\widehat{A}=90^o\\\widehat{HDA}=90^o\\\widehat{HEA}=90^o\end{matrix}\right.\)
=> ADHE là h.c.n
b) Ta có:
\(\left\{{}\begin{matrix}\widehat{BID}=2\widehat{IHD}\\\widehat{IKE}=2\widehat{KCE}\end{matrix}\right.\)
mà \(\widehat{IHD}=\widehat{KCE}\)
=> \(\widehat{BID}=\widehat{IKE}\) mà 2 góc có vị trí đồng vị
=> DI//EK
=> DEKI là hình thang
a: Xét tứ giác ADHE có
\(\widehat{DAE}=\widehat{AEH}=\widehat{ADH}=90^0\)
Do đó: ADHE là hình chữ nhật
Suy ra: AH=DE
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
=>AH=DE
b: AI vuông góc với DE tại I
=>\(\widehat{IEA}+\widehat{IAE}=90^0\)
=>\(\widehat{MAC}+\widehat{AED}=90^0\)
=>\(\widehat{MAC}+\widehat{AHD}=90^0\)
=>\(\widehat{MAC}+\widehat{B}=90^0\)
mà \(\widehat{MCA}+\widehat{B}=90^0\)
nên \(\widehat{MAC}=\widehat{MCA}\)
=>MA=MC
\(\widehat{MAB}+\widehat{MAC}=90^0\)
\(\widehat{MCA}+\widehat{B}=90^0\)
mà \(\widehat{MAC}=\widehat{MCA}\)
nên \(\widehat{MAB}=\widehat{MBA}\)
=>MA=MB
=>MB=MC
=>M là trung điểm của BC
a, Xét tứ giác ADHE có :
^A = ^ADH = ^HEA = 900
Vậy tứ giác ADHE là hcn
Vậy AH = DE ( 2 đường chéo bằng nhau )
b, Xét tam giác AEH và tam giác AHC có :
^AEH = ^AHC = 900
^A _ chung
Vậy tam giác AEH ~ tam giác AHC ( g.g )
=> AH/AC = AE/AH => AH^2 = AE.AC (1)
tương tự với tam giác ADH ~ tam giác AHB (g.g)
=> AD/AH = AH/AB => AH^2=AD.AB (2)
Từ (1) ; (2) suy ra AE.AC = AD.AB
c, Xét tam giác ABH và tam giác CAH
^AHB = ^CHA = 900
^ABH = ^CAH ( cùng phụ ^BAH )
Vậy tam giác ABH ~ tam giác CAH (g.g)
=> AH/CH = BH/AH => AH^2 = BH.CH
=> CH = AH^2/BH = 144/9 = 16
=> BC = BH + CH = 25 cm
Diện tích tam giác ABC là : SABC = 1/2 . AH . BC
= 1/2 . 12 . 25 = 150 cm2
Chọn C