K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
13 tháng 10 2021

Lời giải:

a. Áp dụng HTL trong tam giác vuông ta có:

$AE.AB=AH^2$
$AF.AC=AH^2$

$\Rightarrow AE.AB=AF.AC\Rightarrow \frac{AE}{AF}=\frac{AC}{AB}$

Xét tam giác $AFE$ và $ABC$ có:

$\widehat{EAF}=\widehat{CAB}=90^0$

$\frac{AE}{AF}=\frac{AC}{AB}$ (cmt)

$\Rightarrow \triangle AFE\sim \triangle ABC$ (c.g.c)

b.

Áp dụng HTL trong tam giác vuông:

$BE.BA=BH^2$

$CF.CA=CH^2$

$\Rightarrow BE.CF.AB.AC=(BH.CH)^2=(AH^2)^2$

$\Leftrightarrow BE.CF.2S_{ABC}=AH^4$

$\Leftrightarrow BE.CF.AH.BC=AH^4$

$\Leftrightarrow BE.CF.BC=AH^3$ (đpcm)

AH
Akai Haruma
Giáo viên
13 tháng 10 2021

Hình vẽ:

16 tháng 11 2021

a, Vì \(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\) nên ADHE là hcn

Do đó AH=DE 

6 tháng 7 2021

a) Ta có: \(\angle HEA=\angle HFA=\angle EAF=90\Rightarrow AEHF\) là hình chữ nhật

\(\Delta AHB\) vuông tại H có HE là đường cao \(\Rightarrow AE.AB=AH^2\)

\(\Delta AHC\) vuông tại H có HF là đường cao \(\Rightarrow AF.AC=AH^2\)

\(\Rightarrow AE.AB=AF.AC\)

b) \(\Delta ABC\) vuông tại A có đường cao AH \(\Rightarrow\left\{{}\begin{matrix}AB^2=BH.BC\\AC^2=CH.BC\end{matrix}\right.\)

\(\Rightarrow AB^2-AC^2=BH.BC-CH.BC=BC\left(BH-CH\right)\)

\(=\left(BH+CH\right)\left(BH-CH\right)=BH^2-CH^2\)

c) Ta có: \(\dfrac{1}{HF^2}-\dfrac{1}{CH^2}=\dfrac{1}{AF.FC}-\dfrac{1}{CA.CF}=\dfrac{1}{CF}\left(\dfrac{1}{AF}-\dfrac{1}{CA}\right)\)

\(=\dfrac{1}{CF}.\dfrac{CF}{AF.AC}=\dfrac{1}{AH^2}\)

Lại có: \(\dfrac{1}{HE^2}-\dfrac{1}{BH^2}=\dfrac{1}{BE.EA}-\dfrac{1}{BE.BA}=\dfrac{1}{BE}\left(\dfrac{1}{EA}-\dfrac{1}{BA}\right)\)

\(=\dfrac{1}{BE}.\dfrac{BE}{EA.BA}=\dfrac{1}{AH^2}\)

\(\Rightarrow\dfrac{1}{HF^2}-\dfrac{1}{CH^2}=\dfrac{1}{HE^2}-\dfrac{1}{BH^2}\Rightarrow\dfrac{1}{BH^2}-\dfrac{1}{CH^2}=\dfrac{1}{HE^2}-\dfrac{1}{HF^2}\)

d) Ta có: \(AH^4=\left(AH^2\right)^2=\left(BH.CH\right)^2=BH^2.CH^2\)

\(=BE.BA.CF.CA=BE.CF.\left(AB.AC\right)=BE.CF.AH.BC\)

\(\Rightarrow BC.BE.CF=AH^3\)

e) Ta có: \(AE.BE+AF.CF=EH^2+HF^2=EF^2=AH^2=BH.CH\)

f) Ta có: \(3AH^2+BE^2+CF^2=3AH^2+BH^2-EH^2+CH^2-HF^2\)

\(=3AH^2+BH^2+CH^2-\left(EH^2+HF^2\right)\)

\(=3AH^2+BH^2+CH^2-EF^2=3AH^2+BH^2+CH^2-AH^2\)

\(=BH^2+CH^2+2AH^2=BH^2+CH^2+2BH.CH\)

\(=\left(BH+CH\right)^2=BC^2\)

12 tháng 11 2021

a: \(\widehat{C}=30^0\)

AB=4cm

\(AC=4\sqrt{3}\left(cm\right)\)

a: \(AH=\dfrac{9\cdot12}{15}=7.2\left(cm\right)\)

CH=5,4(cm)

NV
1 tháng 11 2021

undefined

5 tháng 7 2017

bạn tự vẽ hình nha ^.^

trong tam giác vuông ABC có \(AH^2=BH\cdot CH\) \(\Rightarrow AH^4=BH^2\cdot CH^2\)

ma \(HB^2=BE\cdot AB,HC^2=FC\cdot AC\)

suy ra \(AH^4=BE\cdot AB\cdot FC\cdot AC\)

nhung \(AB\cdot AC=AH\cdot BC\)

nen \(AH^4=BE\cdot FC\cdot AH\cdot BC\Rightarrow AH^3=BE\cdot FC\cdot BC\)(1)

de dang chung minh duoc tam giac BEH ~tam giac HFC

suy ra\(\frac{BE}{HF}=\frac{EH}{FC}\Rightarrow BE\cdot FC=EH\cdot HF\)thay vao (1) ta cung co dpcm

6 tháng 7 2017

cám ơn bạn nhiều nha =)

3 tháng 7 2021

a)Áp dụng hệ thức lượng trong tam giác vuông có:

\(AH^2=AE.AB\)

\(AH^2=AF.AC\)

\(\Rightarrow AE.AB=AF.AC\)

b)(\(\dfrac{BE}{CF}\) chứ)

Áp dụng hệ thức lượng trong tam giác vuông có:

\(AB^2=BH.BC\)

\(AC^2=CH.BC\)

\(\Rightarrow\dfrac{AB^2}{AC^2}=\dfrac{BH}{CH}\)\(\Leftrightarrow\dfrac{AB^4}{AC^4}=\dfrac{BH^2}{CH^2}=\dfrac{BE.AB}{CF.AC}\)

\(\Leftrightarrow\dfrac{BE}{CF}=\left(\dfrac{AB}{AC}\right)^3\)

c)Áp dụng định lý Thales có:

\(\dfrac{BH}{BC}=\dfrac{BE}{BA}\Leftrightarrow BA.BH=BE.BC\)

\(\dfrac{CF}{CA}=\dfrac{CH}{BC}\Leftrightarrow CF.BC=CA.CH\)

\(\Rightarrow BA.CA.BH.CH=BE.CF.BC^2\)

\(\Leftrightarrow AH.BC.AH^2=BC^2.BE.BF\)

\(\Leftrightarrow BC^..BE.BF=AH^3\) 

Vậy ....

3 tháng 7 2021

a) Xét \(\Delta AHB\) vuông tại H có \(HE\bot AB\Rightarrow AE.AB=AH^2\)

Xét \(\Delta AHC\) vuông tại H có \(HF\bot AC\Rightarrow AF.AC=AH^2\)

\(\Rightarrow AE.AB=AF.AC\)

b) sửa đề: \(\dfrac{BE}{CF}=\left(\dfrac{AB}{AC}\right)^3\)

Dễ dàng chứng minh được EHAF là hình chữ nhật (có 3 góc vuông)

Ta có: \(\dfrac{AB^2}{AC^2}=\dfrac{BH.BC}{CH.BC}=\dfrac{BH}{CH}\)

Vì \(HF\parallel AB\) \(\Rightarrow\angle EBH=\angle FHC\)

Xét \(\Delta BEH\) và \(\Delta HFC:\) Ta có: \(\left\{{}\begin{matrix}\angle BEH=\angle HFC=90\\\angle EBH=\angle FHC\end{matrix}\right.\)

\(\Rightarrow\Delta BEH\sim\Delta HFC\left(g-g\right)\Rightarrow\dfrac{HB}{HC}=\dfrac{HE}{CF}\)

\(\Rightarrow\dfrac{AB^3}{AC^3}=\dfrac{EH}{CF}.\dfrac{AB}{AC}=\dfrac{HE.AB}{AC.CF}\left(1\right)\)

Vì \(HE\parallel AC\) \(\Rightarrow\dfrac{AB}{AC}=\dfrac{BE}{HE}\Rightarrow BE=\dfrac{AB}{AC}.HE\left(2\right)\)

Thế (2) vào (1) \(\Rightarrow\dfrac{BE}{CF}=\left(\dfrac{AB}{AC}\right)^3\)

c) Ta có: \(AH^4=\left(AH^2\right)^2=\left(BH.CH\right)^2=BH^2.CH^2\)

\(=BE.BA.CF.CA=BE.CF.AH.BC\left(AB.AC=AH.BC\right)\)

\(\Rightarrow AH^3=BE.CF.BC\)

 

 

24 tháng 6 2021

c) Vì tam giác ABC vuông tại A \(\Rightarrow AMHN\) là hình chữ nhật

Ta có: \(\dfrac{S_{BMNC}}{S_{ABC}}=\dfrac{S_{ABC}-S_{AMN}}{S_{ABC}}=1-\dfrac{S_{AMN}}{S_{ABC}}\)

Ta có: \(\dfrac{S_{AMN}}{S_{ABC}}=\dfrac{\dfrac{1}{2}.AM.AN}{\dfrac{1}{2}.AB.AC}=\dfrac{AM.AN}{AB.AC}=\dfrac{AM.AB.AN.AC}{\left(AB.AC\right)^2}\)

\(=\dfrac{AH^2.AH^2}{\left(AH.BC\right)^2}=\dfrac{AH^4}{\left(AH.BC\right)^2}=\dfrac{AH^2}{BC^2}\)

Ta có \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{6^2}+\dfrac{1}{8^2}\Rightarrow AH=\dfrac{24}{5}\left(cm\right)\)

\(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\)

\(\Rightarrow\dfrac{S_{AMN}}{S_{ABC}}=\dfrac{\left(\dfrac{24}{5}\right)^2}{10^2}=\dfrac{144}{625}\Rightarrow\dfrac{S_{BMNC}}{S_{ABC}}=1-\dfrac{144}{625}=\dfrac{481}{625}\)

d) Ta có: \(\angle ANH+\angle AMH=90+90=180\Rightarrow AMHN\) nội tiếp

\(\Rightarrow\angle ANM=\angle AHM=\angle ABC\left(=90-\angle BHM\right)\)

\(\Rightarrow BMNC\) nội tiếp 

\(\Rightarrow\) 4 đường trung trực của các đoạn thẳng BM,MN,NC,CB đồng quy

undefined

24 tháng 6 2021

cho mình hỏi là câu d bài này có cách nào khác cách tứ giác nội tiếp không ?