K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giúp mình với . ( giải chi tiết và cái hình luôn) Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H làgiao điểm của BM và CN.a) Tính số đo các góc BMC và BNC.b) Chứng minh AH vuông góc BC.c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho gócMAB = 60độ . Kẻ dây MN vuông góc với AB...
Đọc tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.

3
9 tháng 10 2017

Hình học lớp 9

21 tháng 4 2017

Tự giải đi em

31 tháng 3 2020

vgfykgkuy

31 tháng 3 2020

mk bt nhưng mk ko bt

1.Cho tam giác ABC vuông tại A (ab<AC) cso AH là đường cao. Biết BH=9cmHC=16cma. Tính AH,ACM số đo góc ABCB. Gọi M là trung điểm của BC đường vuông góc với BC tại M cắt đường thẳng AC và BA theo thứ tự E và F. Chứng minh BH.BF=MB.ABC. Gọi I là trung điểm của È.chứng minh IA là bán kính của đường tròn tâm I bán KÍNH IFD. Chứng minh MA là tiếp tuyến của đường tòn tâm Ibán kính IF2. Cho tam giấc ABC nội...
Đọc tiếp

1.Cho tam giác ABC vuông tại A (ab<AC) cso AH là đường cao. Biết BH=9cmHC=16cm
a. Tính AH,ACM số đo góc ABC
B. Gọi M là trung điểm của BC đường vuông góc với BC tại M cắt đường thẳng AC và BA theo thứ tự E và F. Chứng minh BH.BF=MB.AB
C. Gọi I là trung điểm của È.chứng minh IA là bán kính của đường tròn tâm I bán KÍNH IF
D. Chứng minh MA là tiếp tuyến của đường tòn tâm Ibán kính IF
2. Cho tam giấc ABC nội tiếp đường tròn (o) đườn kính BC. Vẽ dây AD của (o) vuông góc với đường kính BC tại H. Gọi M là trung điểm của cạnh AC.Từ M vẽ đường thẳng vuông góc với OC, đường thẳng này cắt OI tại N trên tia ON lấy điểm S sao cho N là trung điểm của cạnh OS
A. Chứng minh tam giác ABC vuông tại A và HA=HD
B. Chứng minh MN//SC và SC là tiếp tuyến của đường trong (O)
c. Gọi K là trung điểm của cạnh HC vẽ đương tròn đường lính AH cắt cạnh AK tại F chứng minh BH. HC= À. AK 
D. T rên tia đối của tia BA lấy điểm E sao hco B là trung điểm của cạnh AE chứng minh E,H,F thẳng hàng
GIÚP MÌNH VỚI!!!

1
18 tháng 12 2016

tớ ko biết

30 tháng 12 2018

A H B C M I D K F P Q G Note:Hình hơi lệch xíu ^^

a, Vì CM là tiếp tuyến của (A)

=> \(CM\perp AM\)

=> ^CMA = 90o

=> M thuộc đường tròn đường kính AC

Vì ^CHA = 90o

=> H  thuộc đường tròn đường kính AC

Do đó : M và H cùng  thuộc đường tròn đường kính AC

hay 4 điểm A,C,M,H cùng thuộc đường tròn đường kính AC

b, Vì AM = AH ( Bán kính)

       CM = CH (tiếp tuyến)

=> AC là trung trực MH

=> \(AC\perp MH\)tại I

Xét \(\Delta\)AMC vuông tại M có MI là đường cao 

\(\Rightarrow MA^2=AI.AC\)(Hệ thức lượng)

c, Vì CM , CH là tiếp tuyến của (A)

=> AC là phân giác ^HAM

=> ^HAC = ^MAC 

Mà ^HAC + ^HAB  = 90o

=> ^MAC + ^HAB = 90o

Ta có: ^BAD + ^BAC + ^CAM = 180o (Kề bù)

=> ^BAD  + 90o + ^CAM = 180o

=> ^BAD + ^CAM = 90o

Do đó ^BAD = ^BAH (Cùng phụ ^CAM)

Xét \(\Delta\)BAD và \(\Delta\)BAH có:

AB chung

^BAD = ^BAH (cmt)

AD = AH (Bán kính (A) )

=> \(\Delta BAD=\Delta BAH\left(c.g.c\right)\)

=> ^ADB = ^AHB = 90o

\(\Rightarrow BD\perp AD\)

=> BD là tiếp tuyến của (A)

Làm đc đến đây thôi :(