K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc ABC chung

=>ΔABC đồng dạng với ΔHBA

=>BA/BH=BC/BA

=>BA^2=BH*BC

b: \(AC=\sqrt{15^2-9^2}=12\left(cm\right)\)

Xét ΔBAC có BD là phân giác

nên AD/AB=CD/BC

=>AD/3=CD/5=(AD+CD)/(3+5)=12/8=1,5

=>AD=4,5cm; CD=7,5cm

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

=>BA/BH=BC/BA

=>BA^2=BH*BC

b: AC=căn 15^2-9^2=12cm

BD là phân giác

=>AD/AB=CD/BC

=>AD/3=CD/5=(AD+CD)/(3+5)=12/8=1,5

=>AD=4,5cm; CD=7,5cm

c: góc AED=góc BEH=90 độ-góc DBC

góc ADE=90 độ-góc ABD

mà góc DBC=góc ABD

nên góc AED=góc ADE

=>ΔADE cân tại A

mà AI là trung tuyến

nên AI vuông góc ED

=>AI vuông góc BD

=>BI*BD=BA^2=BH*BC

=>BI/BC=BH/BD

=>ΔBIH đồng dạng với ΔBCD

=>góc BIH=góc C

2 tháng 5 2019

a) áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A ta được :

    \(AB^2+AC^2=BC^2\)

   \(9^2+AC^2=15^2\)

    \(81+AC^2=225\)

               \(AC^2=144\)

               \(AC=12\)

Ta có: \(AD+DC=AC\)( hình vẽ )

           \(4,5+DC=12\)

                         \(DC=7,5\)

2 tháng 5 2019

hình tự vẽ đi

d) Xét \(\Delta BAI\)và \(\Delta BDA\)có :

\(\widehat{ABD}\)( chung ) ; \(\widehat{AIB}=\widehat{BAD}=90^o\)

\(\Rightarrow\Delta ABI\approx\Delta DBA\left(g.g\right)\)

\(\Rightarrow\frac{AB}{BI}=\frac{BD}{AB}\)\(\Rightarrow BI.BD=AB^2=81\)

Mà BH.BC = AB2 = 81 ( câu c )

\(\Rightarrow\)BI.BD = BH.BC

\(\Rightarrow\)\(\frac{BH}{BI}=\frac{BD}{BC}\)

Xét \(\Delta BHI\)và \(\Delta BDC\)có :

\(\frac{BH}{BI}=\frac{BD}{BC}\)\(\widehat{DBC}\)( chung )

\(\Rightarrow\Delta BHI\approx\Delta BDC\left(c.g.c\right)\)

\(\Rightarrow\widehat{BIH}=\widehat{BCD}\)hay \(\widehat{BIH}=\widehat{ACB}\)

a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{B}\) chung

Do đó: ΔABC\(\sim\)ΔHBA(g-g)

Suy ra: \(\dfrac{AB}{HB}=\dfrac{BC}{BA}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AB^2=BC\cdot BH\)(đpcm)

28 tháng 1 2022

a, Xét tứ giác ADHE có : 

^A = ^ADH =  ^HEA = 900

Vậy tứ giác ADHE là hcn 

Vậy AH = DE ( 2 đường chéo bằng nhau ) 

b, Xét tam giác AEH và tam giác AHC có : 

^AEH = ^AHC = 900

^A _ chung 

Vậy tam giác AEH ~ tam giác AHC ( g.g ) 

=> AH/AC = AE/AH => AH^2 = AE.AC (1) 

tương tự với tam giác ADH ~ tam giác AHB (g.g)

=> AD/AH = AH/AB => AH^2=AD.AB (2) 

Từ (1) ; (2) suy ra AE.AC = AD.AB 

c, Xét tam giác ABH và tam giác CAH 

^AHB = ^CHA = 900

^ABH = ^CAH ( cùng phụ ^BAH )

Vậy tam giác ABH ~ tam giác CAH (g.g)

=> AH/CH = BH/AH => AH^2 = BH.CH 

=> CH = AH^2/BH = 144/9 = 16

=> BC = BH + CH = 25 cm 

Diện tích tam giác ABC là : SABC = 1/2 . AH . BC 

= 1/2 . 12 . 25 = 150 cm2