Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) AM ứng với cạnh huyền BC nên AM = \(\frac{1}{2}\) x BC = \(\frac{4}{2}\) = 2 cm
AH = tan\(\widehat{ACH}\)x HM = tan 150 x 2 = \(4-2\sqrt{3}\)cm
Sin \(\widehat{AMH}\)= \(\frac{AH}{AM}\)= \(\frac{4-2\sqrt{3}}{2}\) = \(2-\sqrt{3}\) cm
Định lí Pitago : AM2 = AH2 + HM2
HC = tan \(\widehat{ACH}\)x AH
Tam Giác ABC có A = 90o
AM là trung tuyến
=> tam giác AMC cân tại M
=> AMH = 2.C = 30o
AM = 1/2 . BC = 2 (cm)
=> AH = Sin30 . AM = 1 (cm)
=> HM = Cos30 . AM = \(\sqrt{3}\) (cm)
=> HC = HM + MC = \(\sqrt{3}\) + 2 (cm)
b)
Tính được
AC = \(\sqrt{HC.BC}\)
\(\Rightarrow AC=\sqrt{\left(\sqrt{3}+2\right).4}=2\sqrt{2+\sqrt{3}}\)
\(\Rightarrow C\text{os}15^o=\dfrac{HC}{AC}=\dfrac{2+\sqrt{3}}{2\sqrt{2+\sqrt{3}}}=\dfrac{\sqrt{2+\sqrt{3}}}{2}\)
\(\Rightarrow C\text{os}15^o=\dfrac{\sqrt{2}\sqrt{4+2\sqrt{3}}}{4}=\dfrac{\sqrt{2}.\left(\sqrt{3}+1\right)}{4}=\dfrac{\sqrt{6}+\sqrt{2}}{4}\)(đpcm)
A B C E F H M K I
A. Ta có \(\frac{AH}{AC}=\frac{3}{5}\Rightarrow AC=\frac{5}{3}AH;BC=\frac{AB.AC}{AH}=\frac{AB.5AH}{3.AH}=\frac{5}{3}AB\)
Theo định lí Pitago ta có \(AB^2+AC^2=BC^2\Rightarrow15^2+\frac{25}{9}AH^2=\frac{25}{9}.15^2\Rightarrow AH^2=144\Rightarrow AH=12\left(cm\right)\)
\(\Rightarrow AC=\frac{5}{3}.12=20\Rightarrow BC=\sqrt{15^2+20^2}=25\left(cm\right)\)
Theo hệ thức lượng trong tam giác vuông ta có \(BH=\frac{AB^2}{AC}=9;CH=\frac{AC^2}{BC}=16\left(cm\right)\)
b. Theo hệ thức lượng trong tam giác vuông ta có \(BE=\frac{BH^2}{AB}=5,4\left(cm\right);CF=\frac{CH^2}{AC}=12,8\left(cm\right)\)
Ta có \(AH^3=12^3=1728\)
\(BC.BE.CF=25.5,4.12,8=1728\)
Vậy \(AH^3=BC.BE.CF\)
c. Ta kẻ \(CK⊥BC\)tại M \(\Rightarrow\)yêu cầu bài toán \(\Leftrightarrow\)chứng minh M là trung điểm BC
Ta gọi I là giao điểm của AH và EF
Xét \(\Delta AKI\)và \(\Delta AHM\)
có \(\hept{\begin{cases}\widehat{K}=\widehat{H}=90^0\\\widehat{Achung}\end{cases}\Rightarrow\Delta AKI~\Delta AHM\left(g-g\right)}\)
\(\Rightarrow\widehat{AIF}=\widehat{AMB}\)
Ta chứng minh được \(AFHE\)là hình chữ nhật vì \(\widehat{F}=\widehat{A}=\widehat{E}=90^0\)
\(\Rightarrow\widehat{IAF}=\widehat{IFA}\)\(\Rightarrow\widehat{FMA}=180^0-2\widehat{MAF}\left(1\right)\)
Lại có \(\widehat{HBA}=\widehat{IAF}\Rightarrow\widehat{AMH}=180^0-2\widehat{HBA}\)
\(\Rightarrow\Delta AMB\)cân tại I \(\Rightarrow MA=MB\)
Tương tự chứng minh được \(MA=MC\)
Vậy M là trung điểm BC hay ta có đpcm
A C B D O M K H
a;b dễ chắc tự làm đc
c, lấy K sao cho M là trđ của OK
mà có M là trđ của AC (gt)
=> COAK là hình bình hành (dh)
=> CK // OA hay CK // OH và AK // CO hay AK // OD
xét tg KCB có CK // OH => \(\frac{BH}{HC}=\frac{BO}{OK}\) (talet)
xét tg KAB có AK / OD => \(\frac{BO}{OK}=\frac{BD}{DA}\) (talet)
=> \(\frac{BH}{HC}=\frac{BD}{AD}\) mà có \(\frac{BD}{AD}=\frac{BC}{AC}\) do CD là pg của tg ABC (gt)
=> \(\frac{BC}{AC}=\frac{HB}{HC}\Rightarrow BC\cdot HC=HB\cdot AC\)
mà có \(BC\cdot HC=AC^2\) do tg ABC v tại A và AH _|_ BC (gt)
=> AC^2 = HB*AC
=> AC = HB (chia 2 vế cho ac vì ac > 0)
Theo định lý Ce-va ta có: \(\frac{BH}{HC}.\frac{MC}{MA}.\frac{DA}{DB}=1\)
Mà MA = MC (do BM là đường trung tuyến của \(\Delta\)ABC) nên \(\frac{BH}{HC}.\frac{DA}{DB}=1\)(1)
CD là phân giác nên theo tính chất đường phân giác trong tam giác, ta có: \(\frac{DA}{DB}=\frac{AC}{BC}\)(2)
Từ (1) và (2) suy ra \(\frac{BH}{HC}.\frac{AC}{BC}=1\Rightarrow BH.AC=HC.BC\)(3)
Dễ thấy \(\Delta ABC~\Delta HAC\left(g.g\right)\Rightarrow\frac{HC}{AC}=\frac{AC}{BC}\Rightarrow AC^2=BH.HC\)(4)
Từ (3) và (4) suy ra \(AC^2=BH.AC\Rightarrow BH=AC\left(đpcm\right)\)