K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2019

#)Bài này mk biết vẽ vs lại làm nek !

   Mk sẽ cho bn link bài làm chụp từ word : file:///D:/Van%20Ban/Downloads/1519470315_1491468758_6.jpg

   Đúng lun ^^

26 tháng 5 2019

๖²⁴ʱŤ.Ƥεɳɠʉїɳş༉ ( Team TST 14 ): Link đó không vào được nhé! Link đó xuất phát từ ổ D máy tính bạn (hình như vậy,nhìn cái chữ file:///D: thấy giống lắm nên nó thuộc quyền sở hữu cá nhân của máy bạn. Do đó bạn đưa link này là vô ích và nó giống như spam vậy đó.

16 tháng 1 2017

sao lại \(\widehat{ACB}=\frac{1}{3}.\widehat{ACB}\)???

16 tháng 1 2017

Mình nghĩ nên sửa đề lại 1 chút :

D là 1 điểm trên AC sao cho\(\widehat{ABD}=\frac{1}{3}\widehat{ABC}\).E là 1 điểm trên AB sao cho\(\widehat{ACE}=\frac{1}{3}\widehat{ACB}\)

Sau đây là hình vẽ :

A B C E D H G K F I

18 tháng 1 2017

A C B D F I G H K L 1 2 3 4 1 2 E 1 2 1

Lấy điểm L sao cho A là trung điểm LB thì 2 tam giác vuông\(\Delta CAL=\Delta CAB\left(2cgv\right)\)

=> CL = CB mà BC = 2AB ; LB = 2AB nên BC = LB => CL = LB = CB =>\(\Delta CLB\) đều\(\Rightarrow\widehat{ABC}=60^0\)

\(\Delta ABC\)vuông tại A có\(\widehat{ACB}=90^0-\widehat{ABC}=30^0\Rightarrow\widehat{C_2}=\frac{30^0}{3}=10^0\Rightarrow\widehat{C_3}=20^0\)

Ta chứng minh được 2 cặp tam giác vuông\(\Delta CKH=\Delta CKF\left(2cgv\right);\Delta CIF=\Delta CIG\left(2cgv\right)\)

=> CH = CG (1)(vì CH = CF ; CF = CG) ;\(\widehat{C_1}=\widehat{C_2};\widehat{C_3}=\widehat{C_4}\)

\(\Rightarrow\widehat{HCG}=\widehat{C_1}+\widehat{C_2}+\widehat{C_3}+\widehat{C_4}=2\left(\widehat{C_2}+\widehat{C_3}\right)=2\widehat{ACB}=60^0\)(2)

Từ (1) và (2),ta có\(\Delta HCG\)đều nên\(\widehat{G_1}=60^0\)

\(\Delta FCG\)cân tại C (CF = CG) có\(\widehat{FCG}=\widehat{C_3}+\widehat{C_4}=2\widehat{C_3}=40^0\Rightarrow\widehat{FGC}=\frac{180^0-40^0}{2}=70^0\)

\(\Rightarrow\widehat{G_2}=\widehat{CGF}-\widehat{G_1}=70^0-60^0=10^0\)

\(\widehat{B_1}=\frac{\widehat{ABC}}{3}=20^0\Rightarrow\widehat{B_2}=\widehat{ABC}-\widehat{B_1}=40^0\)

\(\widehat{DFG}=\widehat{I_1}+\widehat{B_2}=90^0+40^0=130^0\)(\(\widehat{DFG}\)là góc ngoài\(\Delta FIB\)).\(\Delta DFG\)có :

\(\widehat{FDG}=180^0-\widehat{DFG}-\widehat{G_2}=180^0-130^0-10^0=40^0\)

\(\Delta ADB\)vuông tại A có\(\widehat{ADB}=90^0-\widehat{B_1}=70^0\).

Ta chứng minh được 2 tam giác vuông\(\Delta DKH=\Delta DKF\left(2cgv\right)\)nên\(\widehat{HDK}=\widehat{ADB}\)

\(\Rightarrow\widehat{HDG}=\widehat{HDK}+\widehat{ADB}+\widehat{FDG}=70^0+70^0+40^0=180^0\)

Vậy H,D,G thẳng hàng

18 tháng 1 2017

Tịnh giải quá hay