K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2021

Ta có: \(\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow AB=\dfrac{3}{4}AC\)

tam giác ABC vuông tại A nên áp dụng Py-ta-go

\(\Rightarrow BC^2=AB^2+AC^2=\dfrac{9}{16}AC^2+AC^2=\dfrac{25}{16}AC^2\)

\(\Rightarrow10000=\dfrac{25}{16}AC^2\Rightarrow AC^2=6400\Rightarrow AC=80\left(cm\right)\)

\(\Rightarrow AB=\dfrac{3}{4}.80=60\left(cm\right)\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{60.80}{100}=48\left(cm\right)\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{60^2}{100}=36\left(cm\right)\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AC^2=CH.BC\Rightarrow CH=\dfrac{AC^2}{BC}=\dfrac{80^2}{100}=64\left(cm\right)\)

Ta có: \(\dfrac{AB}{AC}=\dfrac{3}{4}\)

nên \(AB=\dfrac{3}{4}AC\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow\left(\dfrac{3}{4}AC\right)^2+AC^2=100^2\)

\(\Leftrightarrow\dfrac{25}{16}AC^2=10000\)

\(\Leftrightarrow AC^2=6400\)

hay AC=80(cm)

\(\Leftrightarrow AB=\dfrac{3}{4}\cdot AC=\dfrac{3}{4}\cdot80=60\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot100=60\cdot80=4800\)

hay AH=48(cm)

Áp dụng định lí Pytago vào ΔABH vuông tại H,ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow BH^2=60^2-48^2=1296\)

hay BH=36(cm)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên CH=BC-BH=100-36=64(cm)

Bài 2: 

Xét ΔABC có 

\(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{25}{13}\left(cm\right)\\CH=\dfrac{144}{13}\left(cm\right)\end{matrix}\right.\)

Bài 1: 

Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)

\(\Leftrightarrow HB=\dfrac{25}{36}HC\)

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow HC^2\cdot\dfrac{25}{36}=900\)

\(\Leftrightarrow HC=36\left(cm\right)\)

hay HB=25(cm)

19 tháng 9 2021

\(1,\dfrac{AB}{AC}=\dfrac{5}{6}\Leftrightarrow AB=\dfrac{5}{6}AC\)

Áp dụng HTL tam giác

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Leftrightarrow\dfrac{1}{900}=\dfrac{1}{\dfrac{25}{36}AC^2}+\dfrac{1}{AC^2}\\ \Leftrightarrow\dfrac{1}{900}=\dfrac{36}{25AC^2}+\dfrac{1}{AC^2}\\ \Leftrightarrow\dfrac{1}{900}=\dfrac{36+25}{25AC^2}\Leftrightarrow\dfrac{1}{900}=\dfrac{61}{25AC^2}\\ \Leftrightarrow25AC^2=54900\Leftrightarrow AC^2=2196\Leftrightarrow AC=6\sqrt{61}\left(cm\right)\\ \Leftrightarrow AB=\dfrac{5}{6}\cdot6\sqrt{61}=5\sqrt{61}\\ \Leftrightarrow BC=\sqrt{AB^2+AC^2}=61\left(cm\right)\)

Áp dụng HTL tam giác: 

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=...\\CH=\dfrac{AC^2}{BC}=...\end{matrix}\right.\)

Bài 1:

Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)

\(\Leftrightarrow HB=\dfrac{25}{36}HC\)

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow HC^2\cdot\dfrac{25}{36}=900\)

\(\Leftrightarrow HC=36\left(cm\right)\)

hay HB=25(cm)

ΔABC vuông tại A có AM là trung tuyến

nên BC=2*AM

=>BC=5

AB/BC=4/5

=>AB/5=4/5

=>AB=4

AC=căn 5^2-4^2=3

ΔABC vuông tại A có AH là đường cao

nên BH*BC=BA^2; CH*CB=CA^2

=>BH=4^2/5=3,2cm; CH=3^2/5=1,8cm

ΔABC vuông tại A có AH là đường cao

nên AH*BC=AB*AC

=>AH*5=4*3=12

=>AH=2,4cm

29 tháng 10 2021

a, \(BC=BH+HC=5\left(cm\right)\)

Áp dụng HTL: \(\left\{{}\begin{matrix}AB=\sqrt{BH\cdot BC}=2\sqrt{5}\left(cm\right)\\AC=\sqrt{CH\cdot BC}=\sqrt{5}\left(cm\right)\end{matrix}\right.\)

b, Áp dụng HTL: \(AH=\dfrac{AB\cdot AC}{BC}=2\left(cm\right)\)

29 tháng 10 2021

a: BC=4+1=5(cm)

\(\Leftrightarrow\left\{{}\begin{matrix}AB=2\sqrt{5}\left(cm\right)\\AC=\sqrt{5}\left(cm\right)\end{matrix}\right.\)

b: \(AH=\sqrt{HB\cdot HC}=2\left(cm\right)\)

Bài 5: 

a) Xét ΔABC vuông tại A có 

\(AC=AB\cdot\cot\widehat{C}\)

\(=21\cdot\cot40^0\)

\(\simeq25,03\left(cm\right)\)

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=21^2+25,03^2=1067,5009\)

hay \(BC\simeq32,67\left(cm\right)\)

AB/AC=4/3

=>HB/HC=16/9

=>HB/16=HC/9=k

=>HB=16k; HC=9k

AH^2=HB*HC

=>144k^2=24^2=576

=>k=2

=>HB=32cm; HC=18cm

AB=căn 32*50=40cm

AC=căn 18*50=30cm

1 tháng 8 2021

A B C H

a.Xét tam giác ABC và tam giác HBA có:

 ^B chung

^BAC = ^BHA = 90

=> tam giác ABC ~ tam giác HBA (g.g)

b. Áp dụng đl Pytago cho tam giác ABC vuông tại A:

 BC2=AB2+AC2=82+152=289

=>BC=17cm

c.tam giác ABC ~ tam giác HBA

=> AB/HB=BC/BA

=>HB=AB2/BC=82/17=64/17 cm

=>HC=BC-HB=225/17