Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a). Xét tam giác ABH vuông tại H và tam giác DBH vuông tại H có:
AH=DH (GT)
BH là cạnh chung.
=> Tam giác ABH=tam giác DBH (hai cạnh góc vuông).
=> Góc ABH=góc DBH
=> BC là phân giác của góc ABD
Xét tam giác CAH vuông tại H và tam giác CDH vuông tại H có:
AH=DH (GT)
CH là cạnh chung.
=> Tam giác CAH=tam giác CDH (2 cạnh góc vuông)
=> Góc ACH=góc DCH
=> CB là phân giác của góc ACD
b). Vì tam giác ABH=tam giác DBH => BA=BD
Vì tam giác CAH=tam giác CDH => CA=CD
Bạn tự vẽ hình nha
a.
Xét tam giác ABH và tam giác DBH có:
AH = DH (gt)
AHB = DHB ( = 900)
HB là cạnh chung
=> Tam giác ABH = Tam giác DBH (c.g.c)
=> ABH = DBH (2 góc tương ứng)
=> BH là tia phân giác của ABD
Xét tam giác ACH và tam giác DCH có:
AH = DH (gt)
AHC = DHC ( = 900)
HC là cạnh chung
=> Tam giác ACH = Tam giác DCH (c.g.c)
=> ACH = DCH (2 góc tương ứng)
=> CH là tia phân giác của ACD
b.
CA = CD (Tam giác ACH = Tam giác DCH)
BD = BA (Tam giác ABH = Tam giác DBH)
a)
Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)
Suy ra: BH=CH(hai cạnh tương ứng)
Xét ΔABH vuông tại H và ΔDCH vuông tại D có
AH=DH(gt)
BH=CH(cmt)
Do đó: ΔABH=ΔDCH(hai cạnh góc vuông)
Suy ra: AB=DC(Hai cạnh tương ứng)
mà AB=AC(ΔABC cân tại A)
nên AC=DC(đpcm)
b) Xét ΔAHE vuông tại H và ΔDHE vuông tại H có
EH chung
AH=DH(gt)
Do đó: ΔAHE=ΔDHE(hai cạnh góc vuông)
Suy ra: AE=DE(Hai cạnh tương ứng)
Xét ΔACE và ΔDCE có
CA=CD(cmt)
CE chung
AE=DE(cmt)
Do đó: ΔACE=ΔDCE(c-c-c)
Ta có hình vẽ:
A B C H D
a/ Xét tam giác ABH và tam giác DBH có:
BH: chung
\(\widehat{AHB}\)=\(\widehat{DHB}\) = 900 (GT)
AH = HD (GT)
Vậy tam giác ABH = tam giác DBH (c.g.c)
=> \(\widehat{ABH}\)=\(\widehat{DBH}\) (2 góc tương ứng)
=> BC là phân giác \(\widehat{ABD}\) (đpcm)
b/ Xét tam giác ACH và tam giác DCH có:
CH : cạnh chung
\(\widehat{AHC}\)=\(\widehat{DHC}\)=900 (GT)
AH = HD (GT)
Vậy tam giác ACH = tam giác DCH (c.g.c)
=> CA = CD (2 cạnh tương ứng)
a, xét tam giác ABH và tam giác DBH có : BH chung
góc AHB = góc DHB = 90
AH = HD (gt)
=> tam giác AHB = tam giác DBH (2cgv)
a) Xét \(\Delta ABH\)và \(\Delta DBH\)
ta có AH = DH (gt)
\(\widehat{AHB}=\widehat{DHB}=\left(90^0\right)\)
BH chung
nên \(\Delta ABH=\Delta DBH\left(c-g-c\right)\)
b) Dễ chứng minh \(\Delta AHC=\Delta DHC\left(c-g-c\right)\)
\(\Rightarrow\widehat{ACH}=\widehat{DCH}\)
do đó CH là tpg của \(\widehat{ACD}\)
c) Dễ chứng minh \(\Delta BHD=\Delta EHA\left(g-c-g\right)\)
\(\Rightarrow BH=HE\)
Xét \(\Delta ABH\)và \(\Delta DEH\)
ta có BH = HE (cmt)
\(\widehat{AHB}=\widehat{DHE}\left(=90^0\right)\)
AH = DH (gt)
nên \(\Delta ABH=\Delta DEH\left(c-g-c\right)\)
suy ra \(\widehat{ABH}=\widehat{EDH}\)
mà hai góc này ở vị trí so le trong
do đó AB // DE
1.
a) Xét ΔADE có :
HE là đường trung tuyến của AD HA=HD )(1)
Ta thấy HC=12BC ( AH là đường trung tuyến của BC )
Mà BC = CE (gt )
⇒HC=12CE (2)
Từ (1) và (2) ⇒C là trọng tâm của ΔADE
b) Hơi khó đấy :)
Xét ΔAHB và ΔAHC có :
HAHA chung
HB=HC ( AH là đường trung tuyến của BC )
AB=AC( ΔABC cân tại A )
Do đó : ΔAHB=ΔAHC(c−c−c)
⇒AHBˆ=AHCˆ( hai góc tương ứng )
Mà AHBˆ+AHCˆ=1800
⇒AHB^=AHC^=1800/2=90o
Xét ΔAHEvà ΔHED có :
HEHE chung
HA=HD( HE là đường trung tuyến của AD )
AHEˆ=DHEˆ(=900)
Do đó : ΔAHE=ΔDHE ( hai cạnh góc vuông )
⇒AEHˆ=DEHˆ ( góc tương ứng ) (*)
Vì C là trọng tâm của ΔAED là đường trung tuyến của DE )
Xét vuông tại H có : HM là đường trung tuyến nối từ đỉnh H đến DE
⇒HM=DM (1)
Lưu ý : Trong tam giác vuông , đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền . Tức HM=12DE Mà 12DE=DM⇒HM=DM
Trở lại vào bài :
Mặt khác DM=ME(cmt)(2)
Từ (1) và (2) ⇒HM=ME
⇒ΔHME⇒ΔHME cân tại M
⇒MHEˆ=MEHˆ
Dễ thấy MEHˆ=HEAˆ(cmt)
⇒MHEˆ=HEAˆ
mà hai góc này ở vị trí so le trong
⇒HM⇒HM//AE(đpcm)
GTvà KL bạn tự ghi nha:
a)Xét ΔABH và ΔDBH, có:
Góc BHA=góc BHD=90 độ
BH là cạnh chung
AH=DH(gt)
=>ΔABH=ΔDBH (c.g.c)
b)Ta có:
góc ABH=gócHBD( vì ΔABH=ΔDBH)
Do đó BC là tia phân giác của góc ACD