K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2022

GTvà KL bạn tự ghi nha:

a)Xét ΔABH và ΔDBH, có:

Góc BHA=góc BHD=90 độ

BH là cạnh chung

AH=DH(gt)

=>ΔABH=ΔDBH (c.g.c)

b)Ta có:

góc ABH=gócHBD( vì ΔABH=ΔDBH)

Do đó BC là tia phân giác của góc ACD

 

6 tháng 7 2016

a). Xét tam giác ABH vuông tại H và tam giác DBH vuông tại H có:

AH=DH (GT)

BH là cạnh chung.

=> Tam giác ABH=tam giác DBH (hai cạnh góc vuông).

=> Góc ABH=góc DBH 

=> BC là phân giác của góc ABD

Xét tam giác CAH vuông tại H và tam giác CDH vuông tại H có:

AH=DH (GT)

CH là cạnh chung.

=> Tam giác CAH=tam giác CDH (2 cạnh góc vuông)

=> Góc ACH=góc DCH

=> CB là phân giác của góc ACD

b). Vì tam giác ABH=tam giác DBH => BA=BD

     Vì tam giác CAH=tam giác CDH => CA=CD

 

6 tháng 7 2016

Bạn tự vẽ hình nhaleu

a.

Xét tam giác ABH và tam giác DBH có:

AH = DH (gt)

AHB = DHB ( = 900)

HB là cạnh chung

=> Tam giác ABH = Tam giác DBH (c.g.c)

=> ABH = DBH (2 góc tương ứng)

=> BH là tia phân giác của ABD

Xét tam giác ACH và tam giác DCH có:

AH = DH (gt)

AHC = DHC ( = 900)

HC là cạnh chung

=> Tam giác ACH = Tam giác DCH (c.g.c)

=> ACH = DCH (2 góc tương ứng)

=> CH là tia phân giác của ACD

b.

CA = CD (Tam giác ACH = Tam giác DCH)

BD = BA (Tam giác ABH = Tam giác DBH)

a)

Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

Suy ra: BH=CH(hai cạnh tương ứng)

Xét ΔABH vuông tại H và ΔDCH vuông tại D có 

AH=DH(gt)

BH=CH(cmt)

Do đó: ΔABH=ΔDCH(hai cạnh góc vuông)

Suy ra: AB=DC(Hai cạnh tương ứng)

mà AB=AC(ΔABC cân tại A)

nên AC=DC(đpcm)

b) Xét ΔAHE vuông tại H và ΔDHE vuông tại H có 

EH chung

AH=DH(gt)

Do đó: ΔAHE=ΔDHE(hai cạnh góc vuông)

Suy ra: AE=DE(Hai cạnh tương ứng)

Xét ΔACE và ΔDCE có 

CA=CD(cmt)

CE chung

AE=DE(cmt)

Do đó: ΔACE=ΔDCE(c-c-c)

11 tháng 12 2016

Ta có hình vẽ:

A B C H D

a/ Xét tam giác ABH và tam giác DBH có:

BH: chung

\(\widehat{AHB}\)=\(\widehat{DHB}\) = 900 (GT)

AH = HD (GT)

Vậy tam giác ABH = tam giác DBH (c.g.c)

=> \(\widehat{ABH}\)=\(\widehat{DBH}\) (2 góc tương ứng)

=> BC là phân giác \(\widehat{ABD}\) (đpcm)

b/ Xét tam giác ACH và tam giác DCH có:

CH : cạnh chung

\(\widehat{AHC}\)=\(\widehat{DHC}\)=900 (GT)

AH = HD (GT)

Vậy tam giác ACH = tam giác DCH (c.g.c)

=> CA = CD (2 cạnh tương ứng)

16 tháng 5 2019

a, xét tam giác ABH và tam giác DBH có : BH chung

góc AHB = góc DHB = 90 

AH = HD (gt)

=> tam giác AHB = tam giác DBH (2cgv)

16 tháng 5 2019

a) Xét  \(\Delta ABH\)và \(\Delta DBH\)

ta có AH = DH (gt)

\(\widehat{AHB}=\widehat{DHB}=\left(90^0\right)\)

BH chung

nên \(\Delta ABH=\Delta DBH\left(c-g-c\right)\)

b) Dễ chứng minh \(\Delta AHC=\Delta DHC\left(c-g-c\right)\)

\(\Rightarrow\widehat{ACH}=\widehat{DCH}\)

do đó CH là tpg của \(\widehat{ACD}\)

c) Dễ chứng minh \(\Delta BHD=\Delta EHA\left(g-c-g\right)\)

\(\Rightarrow BH=HE\)

Xét \(\Delta ABH\)và \(\Delta DEH\)

ta có BH = HE (cmt)

\(\widehat{AHB}=\widehat{DHE}\left(=90^0\right)\)

AH = DH (gt)

nên \(\Delta ABH=\Delta DEH\left(c-g-c\right)\)

suy ra \(\widehat{ABH}=\widehat{EDH}\)

mà hai góc này ở vị trí so le trong 

do đó AB // DE

28 tháng 2 2021
 
 

1.

a) Xét ΔADE có :

HE là đường trung tuyến của AD HA=HD )(1)

Ta thấy HC=12BC ( AH là đường trung tuyến của BC )

Mà BC = CE (gt )

⇒HC=12CE (2)

Từ (1) và (2) ⇒C là trọng tâm của ΔADE

b) Hơi khó đấy :)

Xét ΔAHB và ΔAHC có :

HAHA chung

HB=HC ( AH là đường trung tuyến của BC )

AB=AC( ΔABC cân tại A )

Do đó : ΔAHB=ΔAHC(c−c−c)

⇒AHBˆ=AHCˆ( hai góc tương ứng )

Mà AHBˆ+AHCˆ=1800

⇒AHB^=AHC^=1800/2=90o

Xét ΔAHEvà ΔHED có :

HEHE chung

HA=HD( HE là đường trung tuyến của AD )

AHEˆ=DHEˆ(=900)

Do đó : ΔAHE=ΔDHE ( hai cạnh góc vuông )

⇒AEHˆ=DEHˆ ( góc tương ứng ) (*)

Vì C là trọng tâm của ΔAED là đường trung tuyến của DE )

Xét vuông tại H có : HM là đường trung tuyến nối từ đỉnh H đến DE

⇒HM=DM (1)

Lưu ý : Trong tam giác vuông , đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền . Tức HM=12DE Mà 12DE=DM⇒HM=DM

Trở lại vào bài :

Mặt khác DM=ME(cmt)(2)

Từ (1) và (2) ⇒HM=ME

⇒ΔHME⇒ΔHME cân tại M

⇒MHEˆ=MEHˆ

Dễ thấy MEHˆ=HEAˆ(cmt)

⇒MHEˆ=HEAˆ

mà hai góc này ở vị trí so le trong

⇒HM⇒HM//AE(đpcm)