Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Theo bài ra: vuông tại A
áp dụng Định lý Pytago ta có
b)
Trong tam giác vuông ABC có trung tuyến AM nên
AG = ...
a) Theo bài ra: \(\Delta ABC\) vuông tại A
\(\Rightarrow\)Áp dụng Định lý Pytago ta có :
\(AB^2AC^2=AB^2\rightarrow AB^2=9^2+12^2=BC=\sqrt{255}=\)15(cm)
b)
Trong tam giác vuông ABC có trung tuyến AM nên : AM=BC: 2 =\(\frac{15}{2}\)
\(\rightarrow\)AG = ...
a) Xét \(\Delta ABC\) vuông tại A có: \(BC^2=AB^2+AC^2\) (định lí Pytago)
\(\Rightarrow BC^2=225\Rightarrow BC=\sqrt{225}=15\left(cm\right)\)
Vậy \(BC=15cm\).
b) Xét \(\Delta ABC\) vuông tại A có AM là đường trung truyến
\(\Rightarrow AM=\frac{1}{2}BC\) (định lí)
\(\Rightarrow AM=\frac{1}{2}.15=7,5\)
Ta có: 2 đường trung truyến AM và BN cắt nhau tại G
\(\Rightarrow\)G là trọng tâm của \(\Delta ABC\)
\(\Rightarrow AG=\frac{2}{3}AM=\frac{2}{3}.7,5=5\left(cm\right)\)
Vậy \(AG=5cm\).
c) Xét \(\Delta ABN\) và \(\Delta CDN\) có:
BN = DN (gt)
\(\widehat{ANB}=\widehat{CND}\) (2 góc đối đỉnh)
AN = CN (vì N là trung điểm của AC)
\(\Rightarrow\Delta ABN=\Delta CDN\left(c.g.c\right)\) (đpcm)
a/
\(BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5cm\) (Pitago)
b/
Ta có
\(AM=\dfrac{BC}{2}=\dfrac{5}{2}=2,5cm\) (Trong tg vuông trung tuyến thuộc cạnh huyền thì bằng nửa cạnh huyền)
\(AG=\dfrac{2}{3}AM=\dfrac{2}{3}.\dfrac{5}{2}=\dfrac{5}{3}cm\) (trong tg 3 đường trung tuyến đồng quy tại 1 điểm và điểm đó cách đỉnh 1 khoảng bằng 2/3 độ dài đường trung tuyến mà trung tuyến đó đi qua)
c/
Xét tg ABN và tg CDN có
AN=CN (gt); BN=DN (gt)
\(\widehat{ANB}=\widehat{CND}\) (Góc đối đỉnh)
=> tg ABN=tg CDN (c.g.c)=> \(\widehat{BAN}=\widehat{DCN}=90^o\Rightarrow CD\perp AC\)
Tự vẽ hình
a,AD ĐL py-ta-go vào \(\Delta\)vuông ABC có
\(BC^2=AB^2+AC^2\)
\(x^2=9^2+12^2\)
\(x^2=81+144\)
\(x^2=225\)
\(x=\sqrt{225}=15\)
b,Xét \(\Delta BAN\)và \(\Delta CDN\)có:
BN=DN
\(\widehat{BNA}=\widehat{DNC}\)
NA=NC
\(\Rightarrow\Delta BNA=\Delta CDN\left(c.g.c\right)\)
c,Vì \(\Delta BNA=\Delta CND\left(cmt\right)\)
\(\Rightarrow\widehat{BAN}=\widehat{DCN}\)(2 cạnh t.ư)
Mà 2 góc này ở VTSLT
\(\Rightarrow CD//AB\)
Ta có tam giác ABC vuông tại A
=> \(AB^2+AC^2=BC^2\)
=> BC = 15
Trong tm giác vuông đường trung tuyến ừng vs cạnh huyền bằng một nửa cạnh huyền
=> AM = 1/2 BC
=> AM = 7,5
=> AG = 2/3 AM
=> AG = 5
c) Xét tam giác BAN và tam giác CND có
BN = ND ( gt ) ; ^AGB = ^DNC ( đ đ ) ; AN = NC ( BN là đường trung tuyến của AC )
=> tam giác BAN = tam giác DCN
=> ^A = ^ C = 90
=> dpcm
a: AN=AC/2
AM=AB/2
mà AB=AC
nên AM=AN
b: Xét tứ giác AGCK có
N là trung điểm chung của CA và GK
=>AGCK là hình bình hành
=>AG//CK
c: BG=2GN
mà GN=1/2GK
nen BG=GK