Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A có
\(AB^2+AC^2=BC^2\)
hay AC=12(cm)
Xét ΔBAC vuông tại A có
\(\sin\widehat{ACB}=\dfrac{AB}{BC}=\dfrac{5}{13}\)
\(\cos\widehat{ACB}=\dfrac{AC}{BC}=\dfrac{12}{13}\)
\(\tan\widehat{ACB}=\dfrac{5}{12}\)
\(\cot\widehat{ACB}=\dfrac{12}{5}\)
a: Xét ΔBAC vuông tại A có
\(AB^2+AC^2=BC^2\)
hay AC=12(cm)
Xét ΔABC vuông tại A có
\(\sin\widehat{ACB}=\dfrac{AB}{BC}=\dfrac{5}{13}\)
\(\cos\widehat{ACB}=\dfrac{AC}{BC}=\dfrac{12}{13}\)
\(\tan\widehat{ACB}=\dfrac{5}{12}\)
\(\cot\widehat{ACB}=\dfrac{12}{5}\)
a: Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay AC=12(cm)
Xét ΔBAC vuông tại A có
\(\sin\widehat{ACB}=\dfrac{AB}{BC}=\dfrac{5}{13}\)
\(\cos\widehat{ACB}=\dfrac{AC}{BC}=\dfrac{12}{13}\)
\(\tan\widehat{ACB}=\dfrac{5}{12}\)
\(\cot\widehat{ACB}=\dfrac{12}{5}\)
Bài 1:
a: Xét ΔBAC vuông tại A có
\(\widehat{B}+\widehat{C}=90^0\)
hay \(\widehat{C}=60^0\)
Xét ΔBAC vuông tại A có
\(AB=BC\cdot\sin60^0\)
\(\Leftrightarrow BC=4\sqrt{3}\left(cm\right)\)
\(\Leftrightarrow AC=2\sqrt{3}\left(cm\right)\)
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
\(\widehat{BAE}\) chung
Do đó: ΔABE\(\sim\)ΔACF
Suy ra: \(\dfrac{AB}{AC}=\dfrac{AE}{AF}\)
hay \(AF\cdot AB=AE\cdot AC\)
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC=\sqrt{5^2+4^2}=\sqrt{41}\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\BH\cdot BC=BA^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}AH\cdot\sqrt{41}=5\cdot4\\BH\cdot\sqrt{41}=5^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=\dfrac{20\sqrt{41}}{41}\left(cm\right)\\BH=\dfrac{25\sqrt{41}}{41}\left(cm\right)\end{matrix}\right.\)
b: Xét ΔABC có AE là phân giác
nên \(\dfrac{BE}{AB}=\dfrac{CE}{AC}\)
=>\(\dfrac{BE}{5}=\dfrac{CE}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BE}{5}=\dfrac{CE}{4}=\dfrac{BE+CE}{5+4}=\dfrac{\sqrt{61}}{9}\)
=>\(BE=\dfrac{5}{9}\sqrt{61}\left(cm\right);CE=\dfrac{4}{9}\sqrt{61}\left(cm\right)\)
c: Xét tứ giác AMEN có
\(\widehat{AME}=\widehat{ANE}=\widehat{MAN}=90^0\)
=>AMEN là hình chữ nhật
Hình chữ nhật AMEN có AE là phân giác của góc MAN
nên AMEN là hình vuông
\(b,AC=\sqrt{BC^2-AB^2}=12\left(cm\right)\left(pytago\right)\)
Vì BE là p/g nên \(\dfrac{AE}{EC}=\dfrac{AB}{BC}=\dfrac{5}{13}\Rightarrow AE=\dfrac{5}{13}EC\)
Mà \(AE+EC=AC=12\Rightarrow\dfrac{18}{13}EC=12\Rightarrow EC=\dfrac{26}{3}\left(cm\right)\)
\(\Rightarrow AE=\dfrac{10}{3}\left(cm\right)\)
Vì CF là p/g nên \(\dfrac{AF}{FB}=\dfrac{AC}{BC}=\dfrac{12}{13}\Rightarrow AF=\dfrac{12}{13}FB\)
Mà \(AF+FB=AB=5\Rightarrow\dfrac{25}{13}FB=5\Rightarrow FB=\dfrac{13}{5}\left(cm\right)\)
\(\Rightarrow AF=\dfrac{12}{5}\left(cm\right)\)
\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{12}{13}\approx\sin67^0\Rightarrow\widehat{B}\approx67^0\\ \Rightarrow\widehat{C}=90^0-67^0=23^0\)
Vì BE,CF là p/g nên \(\left\{{}\begin{matrix}\widehat{ICB}=\dfrac{1}{2}\widehat{ACB}=11,5^0\\\widehat{IBC}=\dfrac{1}{2}\widehat{ABC}=33,5^0\end{matrix}\right.\)
\(\Rightarrow\widehat{BIC}=180^0-\widehat{ICB}-\widehat{IBC}=135^0\)
\(c,\widehat{AKI}=\widehat{AHI}=\widehat{KAH}=90^0\) nên AHIK là hcn
Mà AI là p/g \(\widehat{KAH}\)(I là giao 3 đường p/g tam giác ABC)
Nên AHIK là hình vuông