Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Xét ΔABC vuông tại A, có:
AB2 + AC2 = BC2 (Định lý Py-ta-go)
⇒ 62 + 82 = BC2 (thay số)
⇒ BC2 = 100
⇒ BC = 10
b) Có: AH vuông góc với BC (gt)
⇒ góc AHB = góc AHD (tính chất ....)
Xét ΔAHB và ΔAHD, có:
BH = HD (gt)
góc AHB = AHD (cmt)
AH chung
⇒ ΔAHB = ΔAHD (c.g.c)
⇒ AB = AD (cặp cạnh tương ứng) (đpcm)
a, Xét tam giác ABC cân tại A có AH vuông BC
=> AH đồng thời là đường trung tuyến
=> BH = CH
b, Theo Pytago tam giác AHB vuông tại H
\(BH=\sqrt{AB^2-AH^2}=6cm\)
=> BC = 2BH = 12 cm
c, Vì tia đối của BC là tia BM
=> BM = BC
Vì tia đối của CB là tia CN
=> CN = BC
=> BM + BH = CN + CH
hay H là trung điểm MN
Xét tam giaccs AMN có :
AH là đường cao
AH là đường trung tuyến
=> AH đồng thời phân giác
Áp dụng đl Pi ta go đảo cho Tam giác ABC
=>AB2+CA2=BC2
=>152+362=392
=>1521=1521
=>Tam giác ABC vuông tại A
Áp dụng đl pi ta go cho tam giác ABH
=>AB2=AH2+BH2
=>152=92+BH2
=>BH2=225-81=144=122
=>BH=12
Vậy...
a, Xét △BAH vuông tại H và △CAH vuông tại H
Có: AH là cạnh chung
AB = AC (gt)
=> △BAH = △CAH (ch-cgv)
=> BH = CH (2 cạnh tương ứng)
Mà H nằm giữa B, C
=> H là trung điểm BC
Ta có: BH + CH = BC => BH + BH = 12 => 2BH = 12 => BH = 6 (cm)
Xét △BAH vuông tại H có: AH2 + BH2 = AB2 (định lý Pytago)
=> AH2 = AB2 - BH2
=> AH2 = 102 - 62
=> AH2 = 64
=> AH = 8 (cm)
b, Ta có: MH = MB + BH và HN = HC + CN
Mà BH = HC (cmt) ; MB = CN (gt)
=> MH = HN
Xét △MHA vuông tại H và △NHA vuông tại H
Có: AH là cạnh chung
MH = HN (cmt)
=> △MHA = △NHA (2cgv)
=> HMA = HNA (2 góc tương ứng)
Xét △AMN có: AMN = ANM (cmt) => △AMN cân tại A
c, Xét △MBE vuông tại E và △NCF vuông tại F
Có: EMB = FNC (cmt)
MB = CN (gt)
=> △MBE = △NCF (ch-gn)
=> MBE = NCF (2 góc tương ứng)
d, Vì △MHA = △NHA (cmt) => MAH = NAH (2 góc tương ứng)
=> AH là phân giác của MAN
Ta có: AE + EM = AM và AF + FN = AN
Mà EM = FN (△MBE = △NCF) ; AM = AN (△AMN cân tại A)
=> AE = AF
Xét △EAK vuông tại E và △FAK vuông tại F
Có: AK là cạnh chung
AE = AF (cmt)
=> △EAK = △FAK (ch-cgv)
=> EAK = FAK (2 góc tương ứng)
=> AK là phân giác EAF => AK là phân giác MAN
Mà AH là phân giác của MAN
=> AK ≡ AH
=> 3 điểm A, H, K thẳng hàng
a: Xét ΔMAB và ΔMDC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔMAB=ΔMDC
a) Xét hai tam giác AMH và NMB có:
MA = MN (gt)
MB = MH (M là trung điểm BH)
ˆAMH=ˆBMNAMH^=BMN^ (đối đỉnh)
⇒ΔAMH=ΔNMB(c.g.c)⇒ΔAMH=ΔNMB(c.g.c)
Vì ΔAMH=ΔNMB(c.g.c)ΔAMH=ΔNMB(c.g.c) nên góc H = góc B
Mà ˆH=900H^=900 nên ˆB=ˆH=900B^=H^=900 (yttu)
Do đó BC⊥NBBC⊥NB
b) Ta có AH = NB (do ΔAMH=ΔNMB(c.g.c)ΔAMH=ΔNMB(c.g.c))
Vì AH là đường cao của tam giác cân ABC nên AH < AB
Do đó NB < AB
c) Ta có ˆMAH=ˆMNBMAH^=MNB^ (do ΔAMH=ΔNMB(c.g.c)ΔAMH=ΔNMB(c.g.c))
Vì NB < AB nên góc BAM < góc MNB (quan hệ góc và cạnh đối diện trong tam giác ABN)
Do đó góc BAM < góc MAH
d) Vì tam giác ABC cân tại A có AH vuông BC nên AH đồng thời là đường trung trực BC
Mặt khác, I nằm trên đường trung trực BC nên A, H, I thẳng hàng
a) Xét ΔAMH và ΔNMB có
MA=MN(gt)
\(\widehat{AMH}=\widehat{NMB}\)(hai góc đối đỉnh)
MH=MB(M là trung điểm của BH)
Do đó: ΔAMH=ΔNMB(c-g-c)
a: BC=15cm
b: Xét ΔABM có
BH là đường cao
BH là đường trung tuyến
Do đó: ΔABM cân tại B
c: Xét tứ giác ABNC có
K là trung điểm của BC
K là trung điểm của AN
Do đó: ABNC là hình bình hành
Suy ra: CN=AB
mà AB=BM
nên CN=BM
cảm ơn bạn nhiều nhé ^^