K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2021

\(a,\) Vì M là trung điểm AD và BC nên ABDC là hình bình hành

Mà \(\widehat{BAC}=90^0\) nên ABDC là hình chữ nhật

\(b,\) Vì H,M là trung điểm AI và AD nên HM là đường trung bình \(\Delta ADI\)

\(\Rightarrow DI\text{//}HM\) hay \(DI//BC\)

Do đó BIDC là hình thang

Vì I đx với A qua BC nên \(AB=BI\) và BC là trung trực AI

Do đó \(\Delta ABI\) cân tại B

Suy ra BC là trung trực cũng là phân giác

Do đó \(\widehat{ABC}=\widehat{CBI}\left(1\right)\)

Lại có ABDC là hcn nên \(\widehat{BCD}+\widehat{ACB}=\widehat{ACD}=90^0\)

Mà \(\Delta ABC\bot A\) nên \(\widehat{ABC}+\widehat{ACB}=90^0\)

\(\Rightarrow\widehat{BCD}=\widehat{ABC}\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow\widehat{CBI}=\widehat{BCD}\)

Vậy BIDC là hình thang cân

12 tháng 12 2020

a)

Ta có: HE=HA(gt)

mà A,H,E thẳng hàng

nên H là trung điểm của AE

Xét ΔAED có 

H là trung điểm của AE(cmt)

M là trung điểm của AD(A và D đối xứng nhau qua M)

Do đó: HM là đường trung bình của ΔAED(Định nghĩa đường trung bình của tam giác)

⇒HM//ED và \(HM=\dfrac{1}{2}\cdot ED\)(Định lí 2 về đường trung bình của tam giác)

b) Xét tứ giác ABDC có 

M là trung điểm của đường chéo BC(gt)

M là trung điểm của đường chéo AD(A và D đối xứng nhau qua M)

Do đó: ABDC là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành ABDC có \(\widehat{BAC}=90^0\)(ΔABC vuông tại A)

nên ABDC là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

 

13 tháng 12 2020

cậu c,d lm kiểu j ạ

 

a: Xét tứ giác ABDC có

M là trung điểm của BC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

mà \(\widehat{BAC}=90^0\)

nên ABDC là hình chữ nhật

b: Xét ΔADE có 

M là trung điểm của AD

H là trung điểm của AE
Do đó: MH là đường trung bình của ΔADE

Suy ra: MH//DE

hay BC//DE

Xét ΔCAE có

CH là đường cao

CH là đường trung tuyến

Do đó: ΔCAE cân tại C

Suy ra: CA=CE
mà CA=BD

nên CE=BD

Xét tứ giác BCDE có DE//BC

nên BCDE là hình thang

mà CE=BD

nên BCDE là hình thang cân

11 tháng 1 2022

thank bạn

19 tháng 12 2017

Ta có hình vẽ:

A B C M D E H

a/ Ta có: BM = MC (M là trung điểm BC)

AM = MD (D đối xứng vs A qua M)

A = 900 (tam giác ABC vuông tại A)

=> ABDC là hình chữ nhật.

SABCD = AB.AC = 6.8 = 48 cm2.

b/ Ta có: M là trung điểm AD (D đối xứng A qua M)

và H là trung điểm AE (E đối xứng A qua M)

=> MH là đường trung bình của tam giác ADE

=> HM // DE (đpcm).

c/ HM là đường trung bình => HM = 1/2 DE.

Ta có: AM = 1/2 AD

Ta có: AH = 1/2 AE

=> SAHM / SAED = 1/2.

20 tháng 2 2020

sao không có câu D vậy bạn

a: Xét tứ giác AMHN có

\(\widehat{AMH}=\widehat{ANH}=\widehat{NAM}=90^0\)

Do đó: AMHN là hình chữ nhật

b: Xét tứ giác AMNE có 

AM//NE

AM=NE

Do đó: AMNE là hình bình hành

c: Xét ΔAHD có 

AM là đường cao

AM là đường trung tuyến

Do đó: ΔAHD cân tại A

mà AM là đường cao

nên AM là tia phân giác của góc HAD(1)

Xét ΔAHE có 

AN là đường cao

AN là đường trung tuyến

Do đó:ΔAHE cân tại A

mà AN là đường cao

nên AN là tia phân giác của góc HAE(2)

Từ (1) và (2) suy ra \(\widehat{DAE}=2\cdot\left(\widehat{MAH}+\widehat{NAH}\right)=2\cdot90^0=180^0\)

=>D,A,E thẳng hàng

mà AD=AE

nên A là trung điểm của DE

7 tháng 8 2019

a, Ta có: DE//BC \(\Rightarrow\widehat{DEB}+\widehat{EBF}=180\)

mà góc EBF =90 => góc DEB =90    (1)

Chứng minh tương tự với DF//AB

\(\Rightarrow\widehat{EDF}=90;\widehat{BFD}=90\)   (2)

Từ (1) và (2) => tứ giác BEDF là hình chữ nhật

7 tháng 8 2019

a) vì ED//BC và DF//AB

\(\Delta ABC\)vuông tại B

Nên \(DE\perp AB\)và \(DF\perp BC\)

Xét tứ giác BEDF có:

\(\widehat{B}=\widehat{DEB}=\widehat{DFB}=90^0\)

 Vậy tứ giác BEDF là hình chữ nhật