K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2018

A B C M D

a) Xét \(\Delta AMC,\Delta DMB\) có :

\(AM=DM\left(gt\right)\)

\(\widehat{AMC}=\widehat{DMB}\) (đối đỉnh)

\(BM=CM\) (M là trung điểm của BC)

=> \(\Delta AMC=\Delta DMB\left(c.g.c\right)\)

b) Xét \(\Delta ABC,\Delta BDA\) có :

\(AB:Chung\)

\(\widehat{ACB}=\widehat{BDA}\) (do \(\Delta AMC=\Delta DMB\))

\(BD=AC\) (\(\Delta AMC=\Delta DMB\))

=> \(\Delta ABC=\Delta BDA\left(c.g.c\right)\)

=> \(\widehat{CAB}=\widehat{ABD}=90^{^O}\) (2 góc tương ứng)

Vậy \(\widehat{ABD}=90^o\)

c) Trong tam giác vuông, trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền (*)

Áp dụng (*) ta có :

\(AM=\dfrac{1}{2}BC\)

=> đpcm.

A B M C D 1 1 Hình minh họa
Chứng minh :
a) Xét △AMC và △DMB có :
AM = DM ( gt )
\(\widehat{AMC}=\widehat{DMB}\) ( đối đỉnh )
MC = MB ( gt )
⇒ △AMC = △DMB ( c.g.c )
⇒ AC = DB ( tương ứng )
\(\Rightarrow\widehat{C1}=\widehat{B1}\) ( tương ứng )
b ) \(\text{ Có }\widehat{C1}=\widehat{B1}\left(cmt\right)\)
\(\widehat{C1}\text{ và }\widehat{B1}\) là hai góc so le trong
⇒ BD // AC ( dấu hiệu nhận biết )
\(\Rightarrow\widehat{DBA}+\widehat{BAC}=180^o\) ( hai góc trong cùng phía )
\(\Rightarrow\widehat{DBA}=180^o-90^o\)
\(\Rightarrow\widehat{DBA}=90^o\)
c ) Xét △DBA vuông tại B và △CAB vuông tại A có :
BD = AC ( cmt )
AB - cạnh chung
⇒ △DBA = △CAB ( cgv - cgv )
⇒ DA = CB ( tương ứng )
\(AM=MD=\dfrac{1}{2}AD\)
\(\Rightarrow AM=\dfrac{1}{2}BC\)

21 tháng 6 2020

tự kẻ hình nha

a) xét tam giác BMD và tam giác CMA có

 AM=MD(gt)

BM=CM(gt)

AMC=BMD( đối đỉnh)

=> tam giác BMD= tam giác CMA(cgc)

=> BDM=MAC( hai góc tương ứng)

mà BDM so le trong với MAC=> AC//BD, BA vuông góc với AC=> BA vuông góc với BD=> ABD=90 độ

b) từ tam giác BMD= tam giác CMA=> BD=AC( hai cạnh tương ứng)

xét tam giác ABC và tam giác BAD có

BD=AC(cmt)

AB chung

BAC=ABD(=90 độ)

=> tam giác ABC= tam giác BAD(cgc)

c) từ tam giác ABC= tam giác BAD => AD=BC( hai cạnh tương ứng)

mà AM=MD=> M là trung điểm của AD 

và M là trung điểm của BC=> AM=MD=BM=CM

=> 2AM=BM+CM

=> 2AM=BC

=> AM=1/2BC

21 tháng 3 2019

Bạn biết vẽ hình ko

Bài 2

Bài làm

a) Xét tam giác ABM và tam giác DCM có:

BM = MC ( Do M là trung điểm BC )

^AMB = ^DMC ( hai góc đối )

MD = MA ( gt )

=> Tam giác ABM = tam giác DCM ( c.g.c )

b) Xét tam giác BHA và tam giác BHE có:

HE = HA ( Do H là trung điểm AE )

^BHA = ^BHE ( = 90o )

BH chung

=> Tam giác BHA = tam giác BHE ( c.g.c ) 

=> AB = BE

Mà tam giác ABM = tam giác DCM ( cmt )

=> AB = CD 

=> BE = CD ( đpcm )

Bài 3

Bài làm

a) Xét tam giác ABD và tam giác ACD có: 

AB = AB ( gt )

BD = DC ( Do M là trung điểm BC )

AD chung

=> Tam giác ABD = tam giác ACD ( c.c.c )

b) Xét tam giác BEC và tam giác MEA có:

AE = EC ( Do E kà trung điểm AC )

^BEC = ^MEA ( hai góc đối )

BE = EM ( gt )

=> Tam giác BEC = tam giác MEA ( c.g.c )

=> BC = AM

Mà BD = 1/2 . BC ( Do D là trung điểm BC )

hay BD = 1/2 . AM

Hay AM = 2.BD ( đpcm )

c) Vì tam giác ABD = tam giác ACD ( cmt )

=> ^ADB = ^ADC ( hai góc tương ứng )

Mà ^ADB + ^ADC = 180o ( hai góc kề bù )

=> ^ADB = ^ADC = 180o/2 = 90o 

=> AD vuông góc với BC                         (1)

Vì tam giác BEC = tam giác MEA ( cmt )

=> ^EBC = ^EMA ( hai góc tương ứng )

Mà hai góc này ở vị trí so le trong

=> AM // BC                              (2)

Từ (1) và (2) => AM vuông góc với AD 

=> ^MAD = 90o 

# Học tốt #

26 tháng 2 2020

Câu hỏi của Vu Duc Manh - Toán lớp 7 - Học toán với OnlineMath

9 tháng 8 2016

bạn tự vẽ hình nha

áp dụng địng lí py ta go vào tam giác ABC vuông ở A

=> \(BC^2=AB^2+AC^2\)

               =\(6^2+8^2\)

               =36+64

               =100

     => BC=10cm

a) ta có định lí: trong 1 tam giác vuông đường trung tuyến ứng với cạnh huyền thì = nửa cạnh huyền

=> AM=\(\frac{BC}{2}\)=\(\frac{10}{2}\)=5 cm

b)xét 2 tam giác AMB và DMC có:

AM =MD(gt)

BM=CM(AM là trung tuyến)

góc AMB=góc DMC(đối đỉnh)

=> 2 tam giác AMB=DMC(c.g.c)

c) 

cì AM =\(\frac{BC}{2}=BM=CM\)

mà AM =DM(gt)

=> AM+DM=BM+CM hay AD=BC

2 tam giác ABM=DMC(theo b)

=> AB=DC(2 cạnh tương ứng) 

xét 2 tam giác ABC và CDA có: 

AB =DC(chứng minh trên )

AD =BC(chứng minh trên)

cạnh AC chung

=> 2 tam giác ABC =CDA(c.c.c)

=> 2góc BAC=DCA=90độ(2 góc tương ứng)

hay AC vuông góc với DC


 

Bài 6: Cho ∠xAy, lấy điểm B trên tia Ax, điểm D trên tia Ay sao cho AB = AD. Trên tia Bx lấy điểm E, trên tia Dy lấy điểm C sao cho BE = DC. Chứng minh ΔABC = ΔADE.Bài 7: Cho đoạn thẳng AB có M là trung điểm. Qua M kẻ đường thẳng d vuông góc với AB. Lấy C ∈ d (C khác M). Chứng minh CM là tia phân giác của ∠ACB.Bài 8: Cho ΔABC có AB = AC, phân giác AM (M ∈ BC).Chứng minh: a) ΔABM = ΔACM. b) M là trung điểm của BC...
Đọc tiếp

Bài 6: Cho ∠xAy, lấy điểm B trên tia Ax, điểm D trên tia Ay sao cho AB = AD. Trên tia Bx lấy điểm E, trên tia Dy lấy điểm C sao cho BE = DC. Chứng minh ΔABC = ΔADE.
Bài 7: Cho đoạn thẳng AB có M là trung điểm. Qua M kẻ đường thẳng d vuông góc với AB. Lấy C ∈ d (C khác M). Chứng minh CM là tia phân giác của ∠ACB.
Bài 8: Cho ΔABC có AB = AC, phân giác AM (M ∈ BC).
Chứng minh: a) ΔABM = ΔACM. b) M là trung điểm của BC và AM ⊥ BC.
Bài 9: Cho ΔABC, trên nửa mặt phẳng bờ AC không chứa điểm B, lấy điểm D sao cho AD // BC và AD = BC. Chứng minh: a) ΔABC = ΔCDA. b) AB // CD và ΔABD = ΔCDB.
Bài 10: Cho ΔABC có ∠A = 90 độ, trên cạnh BC lấy điểm E sao cho BA = BE. Tia phân giác ∠B cắt AC ở D.
a) Chứng minh: ΔABD = ΔEBD. b) Chứng minh: DA = DE. c) Tính số đo ∠BED.
Bài 11: Cho ΔABD, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: a) ΔABM = ΔECM. b) AB = CE và  AC // BE.
(* Chú ý: Δ là tam giác, ∠ là góc, ⊥ là vuông góc, // là song song.)

0
26 tháng 2 2020

A B E O C D M

a) Xét \(\Delta\)MDC và  \(\Delta\)MAB có: MC = MB (gt)  ; ^CMD = ^BMA ( đối đỉnh ) ; MD = MA

=> \(\Delta\)MDC = \(\Delta\)MAB  => AB = DC ; ^MBA = ^MCD mà hai góc này ở vị trí so le trong => AB // CD

b) ^MBA = ^MCD  mà ^MBA + ^MCA = 90o => ^MCD + ^MCA = 90o => ^ACD = 90o 

Xét \(\Delta\)ABC và \(\Delta\)CDA có:  AB = CD ( theo a) ; ^ACD = ^CAB ( =90o ) ; AC chung 

=> \(\Delta\)ABC = \(\Delta\)CDA => BC = AD  => AM =AD/2 =  BC/2

c) \(\Delta\)ABC = \(\Delta\)CDA => ^ACB = CAD (1)

Lại có: \(\Delta\)BCE  có: BA vuông CE; A là trung điểm EC => \(\Delta\)CBE cân => ^ACB = ^AEB  (2)

Từ (1); (2) => ^CAM = ^CEB  mà hai góc ở vị trí đồng vị => AM//EB

d) Để AC = BC/2 => AC = AM = CM =>\(\Delta\)AMC đều => ^ACB = ^ACM = 60o 

=> \(\Delta\)ABC vuông tại A có điều kiện ^C = 60o 

e) \(\Delta\)EBC cân tại B  ( đã chứng minh ở câu c) => BE = BC  mà BC = AD (đã chứng minh ở câu b)

=> BE = AD  

^DAO = ^^OBE ( so le trong ; AM // BE ) 

AO = OB ( O là trung điểm AB )

=> \(\Delta\)AOD = \(\Delta\)BOE => ^AOD = ^BOE mà ^AOD + ^DOB = ^AOB = 180 độ => ^DOB + ^BOE = 180 độ => ^DOE = 180 độ

=> D; O; E thẳng hàng.