Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ). Vì góc BAE = 90 độ = > góc BAD = 90 độ (kề bù)
=> t/g ABD và t/g ABE là t/g vuông
Xét 2 t/g vuông ABD và vuông ABE có:
BA cạnh chung
AD = AE (gt)
do đó : t/g ABD = t/g ABE ( cạnh góc vuông - cạnh góc vuông ).
=> BD = BE ( 2 cạnh tương ứng ) (1)
góc BDA = góc BED ( 2 góc tương ứng ( 2)
Từ (1) và (2) suy ra t/g BDE là t/g đều.
b ) Giả thiết góc BCA = góc ABE (3)
Ta có : EB = EC => t/g BEC cân tại E
=> góc EBC = góc ECB (4)
Từ (3) và (4) suy ra : góc ABE = góc CBE
=> B là đường phân giác góc ABC hay B là phân giác của ABC.
c ) kẻ EK vuông BC tại K
ta có : góc BKE = 90 độ
mà DB // EK (gt)
=> góc DBC = 90 độ ( đồng vị với góc BKE)
=> BD vuông góc BC
d ) Xét 2 t/g vuông KEB và t/g vuông KEC có :
EB = EC (gt)
góc EBK = góc ECK ( cmt )
do đó : t/g KEB = t/g KEC ( cạnh huyền - góc nhọn).
=> KB = KC ( 2 cạnh tương ứng ).
e ) Xét thấy t/g có đường cao FK vuông góc BC (5)
đường cao CA vuông góc BF (6)
Cả 2 đường cao đều cắt nhau tại E
=> E là trực tâm của t/g FBC
=> BE là đường cao thứ 3 của t/g FBC đi qua điểm E và cắt 2 đường cao (5) và (6)
=> BE vuông góc CF
( hình em tự vẽ nhé ) .
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
Do đo: ΔBAD=ΔBED
=>DA=DE
b,c: Xét ΔBFC có BA/AF=BE/EC
nên AE//FC
BA=BE
DA=DE
Do đó; BD là trung trực của AE
=>BD vuông góc với AE
=>BD vuông góc với FC
d: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
góc ADF=góc EDC
Do đó: ΔDAF=ΔDEC
=>góc ADF=góc EDC
=>góc ADF+góc ADE=180 độ
=>D,E,F thẳng hàng
Bạn nên ktra lại con số 15cm
a/ Áp dụng định lí Pythagoras cho t/g ABC vuông tại A có
\(AB^2+AC^2=BC^2\)
=> \(AC=\sqrt{161}\) (cm)
b/ t/g ABH vuông tại H và t/g EBH vuông tại H có
AB = EB
BH : chung
=> t/g ABH=t/g EBH (ch-cgv)
=> HA = HE (2 cạnh t/ứ)
c/ Có \(\widehat{BAH}=\widehat{BEH}\) (do t/g ABH = t/g EBH)
=> \(180^o-\widehat{BAH}=180^o-\widehat{BEH}\)
=> \(\widehat{EAD}=\widehat{AEC}\)
=> t/g AEC = t/g EAD
=> AC = DE
d/
AB = BEAD = EC
=> AB + AD = BE + EC
=> BD = BC=> t/g BCD cân tại B
Có t/g ABH = t/g EBH
=> \(\widehat{ABH}=\widehat{EBH}\)
=> BH là pg góc ABEHay BH là pg góc DBCXét t/g BDC có BH là đường pg
=> BH đồng thời là đường cao
=> BH ⊥ DC
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
b: Xét ΔAHB vuông tại H và ΔACK vuông tại K có
AB=AC
góc HAB=góc KAC
=>ΔAHB=ΔAKC
=>BH=CK và AH=AK
Xét ΔADE co AH/AD=AK/AE
nên HK//DE
=>HK//BC
c: góc HBD+góc D=90 độ
góc KCE+góc E=90 độ
mà góc D=góc E
nên góc HBD=góc KCE
=>góc OBC=góc OCB
=>OB=OC
=>O nằm trên trung trực của BC(1)
ΔBCA cân tại A
mà AM là trung tuyến
nên AM là trung trực của BC(2)
Từ (1), (2) suy ra A,M,O thẳng hàng
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔADB=ΔAEC
=>AD=AE
=>ΔADE cân tại A
b,c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc HAB=góc KAC
=>ΔAHB=ΔAKC
=>BH=CK
Xét ΔAMB vuông tại M và ΔANC vuông tại N có
AB=AC
góc MAB=góc NAC(góc MAB=góc MAC+góc BAC;góc NAC=góc NAB+góc BAC;gócMAC=góc NAB)
=>ΔAMB=ΔANC
=>BM=CN
d: Xét ΔADE có AH/AD=AK/AE
nên HK//DE
=>HK//BC