Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{1}{c}=\frac{1}{2}.\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\Rightarrow\frac{1}{c}:\frac{1}{2}=\frac{1}{a}+\frac{1}{b}\)
\(\Rightarrow\frac{2}{c}=\frac{a}{1}+\frac{b}{1}\)
\(\Rightarrow\frac{2}{c}=\frac{a}{ab}+\frac{b}{ab}\)
\(\Rightarrow\frac{2}{c}=\frac{a+b}{ab}\)
\(\Rightarrow2ab=\left(a+b\right).c\)
\(\Rightarrow2ab=ac+bc\)
\(\Rightarrow ab+ab=ac+bc\)
\(\Rightarrow ab-bc=ac-ab\)
\(\Rightarrow b.\left(a-c\right)=a.\left(c-b\right)\)
\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\left(đpcm\right).\)
Chúc bạn học tốt!
a) Ta có:
\(\left\{{}\begin{matrix}AH\perp BC\left(gt\right)\\DK\perp BC\left(gt\right)\end{matrix}\right.\)
=> \(AH\) // \(DK\) (từ vuông góc đến song song).
b) Làm sao C là trung điểm của HK được, bạn xem lại.
Chúc bạn học tốt!
Hình bạn tự vẽ nha!
a) Xét 2 \(\Delta\) \(ACD\) và \(MCD\) có:
\(AC=MC\left(gt\right)\)
\(\widehat{ACD}=\widehat{MCD}\) (vì \(CD\) là tia phân giác của \(\widehat{C}\))
Cạnh CD chung
=> \(\Delta ACD=\Delta MCD\left(c-g-c\right).\)
b) Mình nghĩ đã nhé.
Chúc bạn học tốt!
a) Xét 2 \(\Delta\) \(ABH\) và \(ACH\) có:
\(AB=AC\left(gt\right)\)
\(\widehat{A_1}=\widehat{A_2}\) (vì \(AH\) là tia phân giác của \(\widehat{A}\))
Cạnh AH chung
=> \(\Delta ABH=\Delta ACH\left(c-g-c\right).\)
b) Theo câu a) ta có \(\Delta ABH=\Delta ACH.\)
=> \(\widehat{AHB}=\widehat{AHC}\) (2 góc tương ứng).
Ta có: \(\widehat{AHB}+\widehat{AHC}=180^0\) (vì 2 góc kề bù).
Mà \(\widehat{AHB}=\widehat{AHC}\left(cmt\right)\)
=> \(2.\widehat{AHB}=180^0\)
=> \(\widehat{AHB}=180^0:2\)
=> \(\widehat{AHB}=90^0.\)
=> \(\widehat{AHB}=\widehat{AHC}=90^0\)
=> \(AH\perp BC\left(đpcm\right).\)
Chúc bạn học tốt!
Tham khảo:
Chúc bạn học tốt!