Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có DE//BC
nên \(\dfrac{AE}{EC}=\dfrac{AD}{DB}\)
=>\(\dfrac{AD}{8}=\dfrac{3}{4}\)
=>\(AD=8\cdot\dfrac{3}{4}=6\left(cm\right)\)
AB=BD+AD
=6+8
=14(cm)
b: Xét ΔABC có DE//BC
nên \(\dfrac{AD}{DB}=\dfrac{AE}{EC}\)
mà \(\dfrac{AD}{DB}=\dfrac{EC}{AE}\)
nên \(\dfrac{AE}{EC}=\dfrac{EC}{AE}\)
=>\(AE^2=EC^2\)
=>AE=EC
=>E là trung điểm của AC
Xét ΔABC có
E là trung điểm của AC
ED//BC
Do đo: D là trung điểm của AB
a: Xét ΔIAB có ID là phân giác
nên DA/DB=AI/IB=AI/IC
Xét ΔIAC có IE là phân gíac
nên AE/EC=AI/IC
=>DA/DB=EA/EC
=>DE//BC
b: Xét ΔABI có DO//BI
nên DO/BI=AO/AI
Xét ΔACI co EO//IC
nên EO/IC=AO/AI
=>DO/BI=EO/IC
mà BI=IC
nên DO=EO
=>O là trung điểm của DE
Do DE song song BC
=> Theo định lý Talet, DA/DB = EA/EC
Mà DA/DB= EC/EA
=> EC=EA
=> E là trung điểm AC
=> DE là đường trung bình của tam giác ABC
=> D cũng là trung điểm AB
Theo định lý Thales trong tam giác ABC, ta có: \(\frac{AD}{DB}=\frac{AE}{EC}\Leftrightarrow\frac{\sqrt{3}}{5}=\frac{AE}{10}\Leftrightarrow AE=\frac{10\sqrt{3}}{5}\)
KL: Vậy ..............
a: Xét ΔAMB có
MD là đường phân giác ứng với cạnh AB
nên \(\dfrac{AD}{DB}=\dfrac{AM}{BM}=\dfrac{4}{6}=\dfrac{2}{3}\)
b: Xét ΔAMB có
MD là đường phân giác ứng với cạnh AB
nên \(\dfrac{AD}{DB}=\dfrac{AM}{MB}\left(1\right)\)
Xét ΔAMC có
ME là đường phân giác ứng với cạnh AC
nên \(\dfrac{AE}{EC}=\dfrac{AM}{MC}\left(2\right)\)
Ta có: M là trung điểm của BC
nên MB=MC(3)
Từ (1), (2) và (3) suy ra \(\dfrac{AD}{DB}=\dfrac{AE}{EC}\)
c: Xét ΔABC có
\(\dfrac{AD}{DB}=\dfrac{AE}{EC}\)
nên DE//BC
a: Xét ΔABC có DE//BC
nên \(\dfrac{AE}{EC}=\dfrac{AD}{DB}\)
=>\(\dfrac{AD}{8}=\dfrac{3}{4}\)
=>\(AD=8\cdot\dfrac{3}{4}=6\)
AB=AD+BD
=>AB=6+8=14
b: Xét ΔABC có DE//BC
nên \(\dfrac{AD}{DB}=\dfrac{AE}{EC}\)
mà \(\dfrac{AD}{DB}=\dfrac{EC}{AE}\)
nên \(\dfrac{AE}{EC}=\dfrac{EC}{AE}\)
=>\(AE^2=EC^2\)
=>AE=EC
=>E là trung điểm của AC
Xét ΔABC có
E là trung điểm của AC
ED//BC
Do đó: D là trung điểm của AB
a) Ta có AB // BC, nên theo định lí đường thẳng song song, ta có:
AE/EC = AB/BC = AB/DB (vì DB = BC)
Với AE/EC = 3/4, ta có:
3/4 = AB/DB
AB = (3/4) * DB = (3/4) * 8 = 6
b) Ta biết rằng D là trung điểm của AB, nên AD = DB/2 = 8/2 = 4.
Tương tự, E là trung điểm của AC, nên AE = EC/2.
Ta cần chứng minh rằng AD/DB = EC/AE.
Ta có:
AD/DB = 4/8 = 1/2
EC/AE = 2 * EC/2 * AE = 2 * EC/2 * (EC/2) = EC^2/(2 * AE)
Vì AE/EC = 3/4, nên AE = (3/4) * EC.
Thay vào biểu thức trên, ta có:
EC/AE = EC^2/(2 * (3/4) * EC) = EC/2
Vậy ta có AD/DB = EC/AE.