K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có DE//BC

nên \(\dfrac{AE}{EC}=\dfrac{AD}{DB}\)

=>\(\dfrac{AD}{8}=\dfrac{3}{4}\)

=>\(AD=8\cdot\dfrac{3}{4}=6\)

AB=AD+BD

=>AB=6+8=14

b: Xét ΔABC có DE//BC

nên \(\dfrac{AD}{DB}=\dfrac{AE}{EC}\)

mà \(\dfrac{AD}{DB}=\dfrac{EC}{AE}\)

nên \(\dfrac{AE}{EC}=\dfrac{EC}{AE}\)

=>\(AE^2=EC^2\)

=>AE=EC

=>E là trung điểm của AC

Xét ΔABC có

E là trung điểm của AC

ED//BC

Do đó: D là trung điểm của AB

9 tháng 12 2023

a) Ta có AB // BC, nên theo định lí đường thẳng song song, ta có:

AE/EC = AB/BC = AB/DB (vì DB = BC)

Với AE/EC = 3/4, ta có:

3/4 = AB/DB

AB = (3/4) * DB = (3/4) * 8 = 6

 

b) Ta biết rằng D là trung điểm của AB, nên AD = DB/2 = 8/2 = 4.

Tương tự, E là trung điểm của AC, nên AE = EC/2.

Ta cần chứng minh rằng AD/DB = EC/AE.

Ta có:

AD/DB = 4/8 = 1/2

EC/AE = 2 * EC/2 * AE = 2 * EC/2 * (EC/2) = EC^2/(2 * AE)

Vì AE/EC = 3/4, nên AE = (3/4) * EC.

Thay vào biểu thức trên, ta có:

EC/AE = EC^2/(2 * (3/4) * EC) = EC/2

Vậy ta có AD/DB = EC/AE.

10 tháng 12 2023

a: Xét ΔABC có DE//BC

nên \(\dfrac{AE}{EC}=\dfrac{AD}{DB}\)

=>\(\dfrac{AD}{8}=\dfrac{3}{4}\)

=>\(AD=8\cdot\dfrac{3}{4}=6\left(cm\right)\)

AB=BD+AD

=6+8

=14(cm)

b: Xét ΔABC có DE//BC

nên \(\dfrac{AD}{DB}=\dfrac{AE}{EC}\)

mà \(\dfrac{AD}{DB}=\dfrac{EC}{AE}\)

nên \(\dfrac{AE}{EC}=\dfrac{EC}{AE}\)

=>\(AE^2=EC^2\)

=>AE=EC

=>E là trung điểm của AC

Xét ΔABC có

E là trung điểm của AC

ED//BC

Do đo: D là trung điểm của AB

a: Xét ΔIAB có ID là phân giác

nên DA/DB=AI/IB=AI/IC

Xét ΔIAC có IE là phân gíac

nên AE/EC=AI/IC

=>DA/DB=EA/EC

=>DE//BC

b: Xét ΔABI có DO//BI

nên DO/BI=AO/AI

Xét ΔACI co EO//IC

nên EO/IC=AO/AI

=>DO/BI=EO/IC

mà BI=IC

nên DO=EO

=>O là trung điểm của DE

31 tháng 1 2023

Do DE song song BC 

=> Theo định lý Talet, DA/DB = EA/EC

Mà DA/DB= EC/EA

=> EC=EA

=> E là trung điểm AC

=> DE là đường trung bình của tam giác ABC

=> D cũng là trung điểm AB

11 tháng 4 2020

A B C D E a

Theo định lý Thales trong tam giác ABC, ta có: \(\frac{AD}{DB}=\frac{AE}{EC}\Leftrightarrow\frac{\sqrt{3}}{5}=\frac{AE}{10}\Leftrightarrow AE=\frac{10\sqrt{3}}{5}\)

KL: Vậy ..............

a: Xét ΔAMB có 

MD là đường phân giác ứng với cạnh AB

nên \(\dfrac{AD}{DB}=\dfrac{AM}{BM}=\dfrac{4}{6}=\dfrac{2}{3}\)

b: Xét ΔAMB có 

MD là đường phân giác ứng với cạnh AB

nên \(\dfrac{AD}{DB}=\dfrac{AM}{MB}\left(1\right)\)

Xét ΔAMC có 

ME là đường phân giác ứng với cạnh AC

nên \(\dfrac{AE}{EC}=\dfrac{AM}{MC}\left(2\right)\)

Ta có: M là trung điểm của BC

nên MB=MC(3)

Từ (1), (2) và (3) suy ra \(\dfrac{AD}{DB}=\dfrac{AE}{EC}\)

c: Xét ΔABC có 

\(\dfrac{AD}{DB}=\dfrac{AE}{EC}\)

nên DE//BC