Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải thích các bước giải:
a. N là trung điểm AC; P là trung điểm CH⇒NP là đường trung bình của ΔACH ⇒NP || AH và NP=AH/2
tương tự: MQ là đường trung bình ΔABH ⇒MQ || AH và MQ=AH/2
⇒MQ || NP (cùng || AH)
b. theo câu a⇒NP và MQ ⊥ BC (vì AH ⊥ BC)
M là trung điểm AB, N là trung điểm AC⇒MN là đường trung bình ΔABC
⇒MN || BC và MN=BC/2⇒MN ⊥ MQ và MN ⊥ NP
⇒MNPQ là hình chữ nhật
c. để MNPQ là hình vuông ⇔MN=MQ=NP=QP
mà MQ=AH/2 và MN=BC/2 ⇒AH=BC
a. N là trung điểm AC; P là trung điểm CH⇒NP là đường trung bình của ΔACH ⇒NP || AH và NP=AH/2
tương tự: MQ là đường trung bình ΔABH ⇒MQ || AH và MQ=AH/2
⇒MQ || NP (cùng || AH)
b. theo câu a⇒NP và MQ ⊥ BC (vì AH ⊥ BC)
M là trung điểm AB, N là trung điểm AC⇒MN là đường trung bình ΔABC
⇒MN || BC và MN=BC/2⇒MN ⊥ MQ và MN ⊥ NP
⇒MNPQ là hình chữ nhật
c. để MNPQ là hình vuông ⇔MN=MQ=NP=QP
mà MQ=AH/2 và MN=BC/2 ⇒AH=BC
b: Xét ΔABC có
I là trung điểm của BC
IH//AC
Do đó: H là trung điểm của AB
Xét tứ giác AIBQ có
H là trung điểm của đường chéo AB
H là trung điểm của đường chéo IQ
Do đó: AIBQ là hình bình hành
mà AB\(\perp\)IQ
nên AIBQ là hình thoi
b: Ta có: \(AE=ED=\dfrac{1}{2}AD\)
mà \(AB=BC=\dfrac{AD}{2}\)
nên AE=ED=AB=BC
Xét tứ giác AECB có
AE//CB
AE=CB
Do đó: AECB là hình bình hành
mà \(\widehat{EAB}=90^0\)
nên AECB là hình chữ nhật
mà AE=AB
nên AECB là hình vuông
Xét ΔHAD có
N là trung điểm của AH
M là trung điểm của HD
Do đó: MN là đường trung bình của ΔHAD
Suy ra: MN//AD và \(MN=\dfrac{AD}{2}\)
mà \(AE=BC=\dfrac{AD}{2}\) và AD//BC
nên MN//BC và MN=BC
Xét tứ giác BCMN có
MN//BC
MN=BC
Do đó: BCMN là hình bình hành
MK K QUEN VẼ TRÊN MÁY TÍNH LÊN HÌNH NÓ K ĐƯỢC CHUẨN , BẠN VẼ VOAFP VỞ THÌ CÂN CHÍNH XÁC HÔ NHÉ
bài làm
xét tám giác ABC có M là trung điểm của AB ; N là trung điểm của AC
áp dụng tc đường trung bình trong 1 tam giác ta có : MN // BC ; MN = \(\frac{1}{2}\) BC
Xét tứ giác BMNC ; có MN//BC ( cmt )
=> BMNC là thang( dn ............)
mà góc B = góc C ( tam giác ABC cân ) => BMNC là hình thang cân
có MN=\(\frac{1}{2}\) BC mà MN=6cm => BC=12
b)
có NM//BC => MN//BE (1)
có MN=\(\frac{1}{2}\)BC mà BE=\(\frac{1}{2}\) BC ( vì AE là đường trung tuyến => BE=EC=\(\frac{1}{2}\) BC )
=> MN=BE (2)
từ (1) và (2)
=> BMNE là hình bình hành ( 2 cạnh song song và = nhau)
c)
có tam giác ABC cân tại A => AB = AC
có AN=\(\frac{1}{2}AC\) ;\(AM=\frac{1}{2}AB\) mà AB=AC(cmt)
=> AN=AM
xét tứ giác AMEN có AM và AN là 2 cạnh kề mà AM=An => AMEN là hình thoi (dn............)
d)
có tam giác ABC cân tại A mà AE là đường trung tuyến => AE là đường cao => AE \(\perp BC\)
hay \(AF\perp BC\)
xét tứ giác ABFC có AF và BC là 2 đường chéo
mà \(AF\perp BC\)
=> ABFC là hình thoi (định nghĩa ......................)
e)
xét tứ giác AQCE
có AC và EQ là 2 đường chéo cắt tại N
mà N là trung điểm của AC ( đề bài )
N là trung điểm của EQ( tia đối )
=> AQCE là hình bình hành
mà AEC=900 ( vì \(AE\perp BC\left(cmt\right)\) )
=> AQCE là hình chữ nhật ( hình bình hành có 1 góc vuông là hình chữ nhật)
~~~~~~~~~~~~~~~~my love~~~~~~~~
k chắc nha , chỗ nào k hỏi add + ib hỏi mk ,