Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

B C A E D F H
Bài làm:
a) Δ EHB ~ Δ DHC (g.g) vì:
+ \(\widehat{EHB}=\widehat{DHC}\) (đối đỉnh)
+ \(\widehat{BEH}=\widehat{CDH}=90^0\)
=> đpcm
b) Theo phần a, 2 tam giác đồng dạng
=> \(\frac{HE}{HB}=\frac{HD}{HC}\)
Δ HED ~ Δ HBC (c.g.c) vì:
+ \(\frac{HE}{HB}=\frac{HD}{HC}\) (chứng minh trên)
+ \(\widehat{EHD}=\widehat{BHC}\) (đối đỉnh)
=> đpcm
c) Δ ABD ~ Δ ACE (g.g) vì:
+ \(\widehat{ADB}=\widehat{AEC}=90^0\)
+ \(\widehat{A}\) chung
=> \(\frac{AD}{AE}=\frac{AB}{AC}\)
Δ ADE ~ Δ ABC (c.g.c) vì:
+ \(\frac{AD}{AE}=\frac{AB}{AC}\) (chứng minh trên)
+ \(\widehat{A}\) chung
=> đpcm
d) Gọi F là giao của AH với BC
Δ BHF ~ Δ BCD (g.g) vì:
+ \(\widehat{BFH}=\widehat{BDC}=90^0\)
+ \(\widehat{B}\) chung
=> \(\frac{BF}{BH}=\frac{BD}{BC}\Rightarrow BD.BH=BF.BC\left(1\right)\)
Tương tự ta chứng minh được:
\(CH.CE=FC.BC\left(2\right)\)
Cộng vế (1) và (2) lại ta được:
\(BD.BH+CH.CE=\left(BF+FC\right)BC=BC.BC=BC^2\)
=> đpcm

Xét ΔABD và ΔAEG, ta có:
BD ⊥ AC (BD là đường cao)
EG ⊥ AC (EG là đường cao)
=> BD // EG
Theo định lý Talet, ta có: A E A B = A G A D = E G B D
=> ΔAEG đồng dạng ΔABD (c - c - c) (đpcm)
Đáp án: A

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
\(\hat{DAB}\) chung
Do đó: ΔADB~ΔAEC
b: Xét ΔFEB vuông tại E và ΔFDC vuông tại D có
\(\hat{EFB}=\hat{DFC}\) (hai góc đối đỉnh)
Do đó: ΔFEB~ΔFDC
=>\(\frac{EF}{DF}=\frac{EB}{DC}\)
=>\(EF\cdot DC=EB\cdot DF\)
c: Ta có: BH⊥BA
CF⊥AB
Do đó: BH//CF
Ta có: BF⊥CA
CH⊥CA
Do đó: BF//CH
Xét tứ giác BFCH có
BF//CH
BH//CF
Do đó: BFCH là hình bình hành
=>BC cắt FH tại trung điểm của mỗi đường
mà G là trung điểm của BC
nên G là trung điểm của FH
Xét ΔAFH có
G,I lần lượt là trung điểm của FH,FA
=>GI là đường trung bình của ΔAFH
=>GI//AH và \(GI=\frac12AH\)
=>AH=2GI
ΔEBC vuông tại E
mà EG là đường trung tuyến
nên GE=GB=GC
Xét ΔGEB có \(\hat{EGC}\) là góc ngoài tại đỉnh G
nên \(\hat{EGC}=\hat{GEB}+\hat{GBE}=2\cdot\hat{GBE}=2\cdot\hat{ABC}\) (1)
ΔAFE vuông tại E
mà EI là đường trung tuyến
nên IE=IF=IA
Xét ΔEIF có \(\hat{EIA}\) là góc ngoài tại đỉnh I
nên \(\hat{EIA}=\hat{IEF}+\hat{IFE}=2\cdot\hat{IFE}\) (2)
Xét ΔABC có
BD,CE là các đường cao
BD cắt CE tại F
Do đó: F là trực tâm của ΔABC
=>AF⊥BC
=>\(\hat{FAB}+\hat{ABC}=90^0\)
mà \(\hat{FAB}+\hat{AFE}=90^0\)
nên \(\hat{ABC}=\hat{AFE}\) (3)
Từ (1),(2),(3) suy ra \(\hat{EIA}=\hat{EGC}\)

A B C D F E H I M N
a, Xét tam giác AFH và tam giác ADB ta có :
^AFH = ^ADB = 900
^A _ chung
Vậy tam giác AFH ~ tam giác ADB ( g.g )
b, Xét tam giác EHC và tam giác FHB ta có :
^EHC = ^FHB ( đối đỉnh )
^CEH = ^BFH = 900
Vậy tam giác EHC ~ tam giác FHB ( g.g )
\(\Rightarrow\frac{EH}{FH}=\frac{HC}{HB}\Rightarrow EH.HB=HC.FH\)
c,

a) Xét 2 tam giác ADB và BCD có:
góc DAB = góc DBC (gt)
góc ABD = góc BDC ( so le trong )
nên tam giác ADB đồng dạng với tam giác BDC.(1)
b) Từ (1) ta được AB/BC = DB/CD = AB/BD
hay ta có; AD/BC = AB/BD <==> 3,5/BC = 2,5/5
==> BC= 3,5*5/2,5 = 7 (cm)
ta cũng có: DB/CD = AB/BD <==> 5/CD = 2,5/5
==> CD = 5*5/2,5 =10 (cm)
c) Từ (1) ta được;
AD/BC = DB/CD = AB/BD hay 3.5/7 = 5/10 = 2,5/5 = 1/2 .
ta nói tam giác ADB đồng giạc với tam giác BCD theo tỉ số đồng dạng là 1/2
mà tỉ số diện tích bằng bình phương tỉ số động dạng
do đó S ADB/ S BCD = (1/2)^2 = 1/4
Xét ΔABD và ΔAEG, ta có:
BD ⊥ AC (BD là đường cao)
EG ⊥ AC (EG là đường cao)
=> BD // EG
Theo định lý Talet, ta có: A E A B = A G A D = E G B D
=> ΔAEG ~ ΔABD (c - c - c) nên (1) đúng.
Tương tự ta cũng chứng minh được ΔADF ~ ΔACE nên (2) đúng
Dễ thấy (3) sai vì A E A B ≠ A C A C
Vậy có hai cặp tam giác đồng dạng trong các cặp đã nêu.
Đáp án: C