Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCDA vuông tại D và ΔCEB vuông tại E có
góc C chung
=>ΔCDA đồng dạng với ΔCEB
b: Xét ΔIEA vuông tại E và ΔIDB vuông tại D có
góc EIA=góc DIB
=>ΔIEA đồng dạng với ΔIDB
=>IE/ID=IA/IB
=>IE*IB=ID*IA
a: Xét ΔBDA vuông tại D và ΔBFC vuông tại F co
góc B chung
=>ΔBDA đồng dạng vói ΔBFC
b: góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
=>góc AFE=góc ACB
=>ΔAFE đồng dạng vói ΔACB
c: Xét ΔAEH vuông tại E và ΔADC vuông tại D có
góc EAH chung
=>ΔAEH đồng dạng vói ΔADC
=>AD*AH=AE*AC
Xét ΔCEH vuông tại E và ΔCFA vuông tại F có
góc ECH chung
=>ΔCEH đồng dạng vói ΔCFA
=>CH*CF=CE*CA
=>AH*AD+CH*CF=CA^2
a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc ACB chung
Do dó ΔCDE đồng dạng với ΔCAB
=>CD/CA=CE/CB
=>CD/CE=CA/CB
=>ΔCDA đồng dạng với ΔCEB
=>EB/DA=BC/AC
mà BC/AC=AC/CH
nên EB/DA=AC/CH=BA/HA
=>BE/AD=BA/HA
=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)
\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)
b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2
nên góc AEB=45 độ
=>ΔABE vuông cân tại A
=>AM vuông góc với BE
BM*BE=BA^2
BH*BC=BA^2
Do đó: BM*BE=BH/BC
=>BM/BC=BH/BE
=>ΔBMH đồng dạng với ΔBCE
a)Xét\(\Delta\)AMB và \(\Delta ANC\) có:\(\widehat{A}\):chung
\(\widehat{AMB}=\widehat{ANC}=90\)0
=>\(\Delta AMB\sim\Delta ANC\)(g.g)
b)Vì \(\Delta AMB\sim\Delta ANC\)
\(\Rightarrow\)\(\dfrac{AM}{AN}=\dfrac{AB}{AC}\)
\(\Rightarrow\) \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
Xét \(\Delta AMN\) và \(\Delta ABC\) có:
\(\widehat{A}:chung\)
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\left(cmt\right)\)
\(\Rightarrow\Delta AMN\sim\Delta ABC\left(c.g.c\right)\)
Khó king khủng em mới học lớp 4 thôi để em ăn cháo sen bát bảo minh trung làm được ngay nhưng phải làm thêm tí bò húc với lại rượu đế ! la la la la la ta là một con người
a)Xét ΔABE và ΔACF ta có:
\(\widehat{A}\) \(chung\)
\(\widehat{AEB}=\widehat{AFC}=90^0\)
⇒ΔABE ∼ ΔACF(g.g)
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc A chung
=>ΔABE đồng dạng với ΔACF
b: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
góc FHB=góc EHC
=>ΔHFB đồng dạng với ΔHEC
=>HF/HE=HB/HC
=>HF*HC=HE*HB
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc BAE chung
=>ΔABE đồng dạng với ΔACF
=>AB/AC=AE/AF
=>AE/AB=AF/AC và AE*AC=AB*AF
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc A chung
=>ΔAEF đồng dạng với ΔABC
=>góc AEF=góc ACB
c; góc AFH=góc AEH=90 độ
=>AFHE nội tiếp (I)
=>IF=IE
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp (M)
=>MF=ME
=>MI là trung trực của EF
=>MI vuông góc EF
a) \(\Delta ABC\) có 2 đường cao \(AD\) và \(BE\)cắt nhau tại \(H\)
\(\Rightarrow\)\(H\)là trực tâm \(\Delta ABC\)
\(\Rightarrow\)\(CH\perp AB\)tại \(I\)
b) Xét \(\Delta ABE\)và \(\Delta ACI\) có:
\(\widehat{AEB}=\widehat{AIC}=90^0\)
\(\widehat{BAC}\) CHUNG
suy ra: \(\Delta ABE~\Delta ACI\)
\(\Rightarrow\)\(\frac{AB}{AC}=\frac{BE}{CI}\)\(\Rightarrow\)\(BE=\frac{AB.CI}{AC}\)
hay \(BE=\frac{10.9}{15}=6\)
c) Xét \(\Delta HEA\) và \(\Delta HDB\)có:
\(\widehat{HEA}=\widehat{HDB}=90^0\)
\(\widehat{AHE}=\widehat{BHD}\) (đối đỉnh)
suy ra: \(\Delta HEA~\Delta HDB\)
d) Xét \(\Delta IHB\)và \(\Delta EHC\)có:
\(\widehat{HIB}=\widehat{HEC}=90^0\)
\(\widehat{IHB}=\widehat{EHC}\) đối đỉnh
suy ra: \(\Delta IHB~\Delta EHC\)
e) \(\Delta BEA\)\(~\) \(\Delta CIA\)
\(\Rightarrow\)\(\frac{EA}{IA}=\frac{AB}{AC}\)
\(\Rightarrow\)\(\frac{AE}{AB}=\frac{AI}{AC}\)
Xét \(\Delta AEI\) và \(\Delta ABC\)có:
\(\frac{AE}{AB}=\frac{AI}{AC}\) (cmt)
\(\widehat{BAC}\) chung
suy ra: \(\Delta AEI~\Delta ABC\)
g) C/m: \(\Delta BEC~\Delta ADC\) (g.g)
\(\Rightarrow\) \(\frac{EC}{DC}=\frac{BC}{AC}\)
\(\Rightarrow\)\(EC.AC=BC.DC\)