K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2018

a)   \(\Delta ABC\)  có    2 đường cao   \(AD\) và     \(BE\)cắt nhau tại  \(H\)

\(\Rightarrow\)\(H\)là trực tâm \(\Delta ABC\)

\(\Rightarrow\)\(CH\perp AB\)tại   \(I\)

b)   Xét  \(\Delta ABE\)và   \(\Delta ACI\) có:

\(\widehat{AEB}=\widehat{AIC}=90^0\)  

\(\widehat{BAC}\)   CHUNG

suy ra:  \(\Delta ABE~\Delta ACI\)

\(\Rightarrow\)\(\frac{AB}{AC}=\frac{BE}{CI}\)\(\Rightarrow\)\(BE=\frac{AB.CI}{AC}\)

hay   \(BE=\frac{10.9}{15}=6\)

c)  Xét \(\Delta HEA\) và   \(\Delta HDB\)có:

\(\widehat{HEA}=\widehat{HDB}=90^0\)

\(\widehat{AHE}=\widehat{BHD}\) (đối đỉnh)

suy ra:  \(\Delta HEA~\Delta HDB\)

d)   Xét  \(\Delta IHB\)và    \(\Delta EHC\)có:

\(\widehat{HIB}=\widehat{HEC}=90^0\)

\(\widehat{IHB}=\widehat{EHC}\)   đối đỉnh

suy ra:  \(\Delta IHB~\Delta EHC\)

e)     \(\Delta BEA\)\(~\)   \(\Delta CIA\)

\(\Rightarrow\)\(\frac{EA}{IA}=\frac{AB}{AC}\)

\(\Rightarrow\)\(\frac{AE}{AB}=\frac{AI}{AC}\)

Xét   \(\Delta AEI\) và   \(\Delta ABC\)có:

\(\frac{AE}{AB}=\frac{AI}{AC}\) (cmt)

\(\widehat{BAC}\)  chung

suy ra:    \(\Delta AEI~\Delta ABC\)

g)   C/m:   \(\Delta BEC~\Delta ADC\)  (g.g)

\(\Rightarrow\) \(\frac{EC}{DC}=\frac{BC}{AC}\)

\(\Rightarrow\)\(EC.AC=BC.DC\)

26 tháng 4 2018

chữ cx đẹp đấy nhỉok

a: Xét ΔCDA vuông tại D và ΔCEB vuông tại E có

góc C chung

=>ΔCDA đồng dạng với ΔCEB

b: Xét ΔIEA vuông tại E và ΔIDB vuông tại D có

góc EIA=góc DIB

=>ΔIEA đồng dạng với ΔIDB

=>IE/ID=IA/IB

=>IE*IB=ID*IA

a: Xét ΔBDA vuông tại D và ΔBFC vuông tại F co

góc B chung

=>ΔBDA đồng dạng vói ΔBFC

b: góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

=>góc AFE=góc ACB

=>ΔAFE đồng dạng vói ΔACB

c: Xét ΔAEH vuông tại E và ΔADC vuông tại D có

góc EAH chung

=>ΔAEH đồng dạng vói ΔADC

=>AD*AH=AE*AC

Xét ΔCEH vuông tại E và ΔCFA vuông tại F có

góc ECH chung

=>ΔCEH đồng dạng vói ΔCFA

=>CH*CF=CE*CA

=>AH*AD+CH*CF=CA^2

a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có

góc ACB chung

Do dó ΔCDE đồng dạng với ΔCAB

=>CD/CA=CE/CB

=>CD/CE=CA/CB

=>ΔCDA đồng dạng với ΔCEB

=>EB/DA=BC/AC

mà BC/AC=AC/CH

nên EB/DA=AC/CH=BA/HA

=>BE/AD=BA/HA

=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)

\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)

b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2

nên góc AEB=45 độ

=>ΔABE vuông cân tại A

=>AM vuông góc với BE

BM*BE=BA^2

BH*BC=BA^2

Do đó: BM*BE=BH/BC

=>BM/BC=BH/BE

=>ΔBMH đồng dạng với ΔBCE

9 tháng 4 2018

a)Xét\(\Delta\)AMB và \(\Delta ANC\) có:\(\widehat{A}\):chung

\(\widehat{AMB}=\widehat{ANC}=90\)0

=>\(\Delta AMB\sim\Delta ANC\)(g.g)

b)Vì \(\Delta AMB\sim\Delta ANC\)

\(\Rightarrow\)\(\dfrac{AM}{AN}=\dfrac{AB}{AC}\)

\(\Rightarrow\) \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)

Xét \(\Delta AMN\)\(\Delta ABC\) có:

\(\widehat{A}:chung\)

\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\left(cmt\right)\)

\(\Rightarrow\Delta AMN\sim\Delta ABC\left(c.g.c\right)\)

24 tháng 4 2017

Khó king khủng em mới học lớp 4 thôi để em ăn cháo sen bát bảo minh trung làm được ngay nhưng phải làm thêm tí bò húc với lại rượu đế ! la la la la la ta là một con người

9 tháng 4 2023

a)Xét ΔABE và ΔACF ta có:

\(\widehat{A}\) \(chung\)

\(\widehat{AEB}=\widehat{AFC}=90^0\)

⇒ΔABE ∼ ΔACF(g.g)

 

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

góc A chung

=>ΔABE đồng dạng với ΔACF

b: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có

góc FHB=góc EHC

=>ΔHFB đồng dạng với ΔHEC

=>HF/HE=HB/HC

=>HF*HC=HE*HB

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

góc BAE chung

=>ΔABE đồng dạng với ΔACF

=>AB/AC=AE/AF

=>AE/AB=AF/AC và AE*AC=AB*AF

b: Xét ΔAEF và ΔABC có

AE/AB=AF/AC

góc A chung

=>ΔAEF đồng dạng với ΔABC

=>góc AEF=góc ACB

c; góc AFH=góc AEH=90 độ

=>AFHE nội tiếp (I)

=>IF=IE

góc BFC=góc BEC=90 độ

=>BFEC nội tiếp (M)

=>MF=ME

=>MI là trung trực của EF

=>MI vuông góc EF