Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) -△AEF và △ABC có: \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(△ABE∼△ACF), \(\widehat{BAC}\) chung.
\(\Rightarrow\)△AEF∼△ABC (c-g-c) \(\Rightarrow\dfrac{S_{AEF}}{S_{ABC}}=\left(\dfrac{EF}{BC}\right)^2\).
-△MFB và △MEC có: \(\widehat{FMB}=\widehat{EMC}\) , \(\widehat{MFB}=\widehat{MEC}=90^0\)
\(\Rightarrow\)△MFB∼△MEC (g-g) \(\Rightarrow\dfrac{MF}{ME}=\dfrac{MB}{MC}\).
-△MEF và △MCB có: \(\dfrac{MF}{MB}=\dfrac{ME}{MC}\left(\dfrac{MF}{ME}=\dfrac{MB}{MC}\right),\widehat{EMF}=\widehat{CMB}\)
\(\Rightarrow\)△MEF∼△MCB (c-g-c) \(\Rightarrow\dfrac{S_{MEF}}{S_{MCB}}=\left(\dfrac{EF}{BC}\right)^2\)
\(\dfrac{AK}{AD}.\dfrac{AE}{AC}=\dfrac{S_{AKE}}{S_{ADC}}=\dfrac{S_{AFK}}{D_{ADB}}=\dfrac{S_{AKE}+S_{AFK}}{S_{ADC}+S_{ADB}}=\dfrac{S_{AEF}}{S_{ABC}}=\left(\dfrac{EF}{BC}\right)^2\)
\(\dfrac{MK}{MD}.\dfrac{AE}{AC}=\dfrac{S_{MEK}}{S_{MDC}}=\dfrac{S_{MFK}}{S_{MDB}}=\dfrac{S_{MEK}+S_{MFK}}{S_{MDC}+S_{MDB}}=\dfrac{S_{MEF}}{S_{MCB}}=\left(\dfrac{EF}{BC}\right)^2\)
\(\Rightarrow\dfrac{AK}{AD}=\dfrac{MK}{MD}\Rightarrow AK.MD=MK.AD\)
a)Xét tam giác ABE và tam giác ACF có:
\(\widehat{AFC}=\widehat{AEB}\)
\(\widehat{A}\) chung
=> tam giác ABE và tam giác ACF đồng dạng
\(\Rightarrow\dfrac{AF}{AE}=\dfrac{FC}{BE}=\dfrac{AC}{AB}\Rightarrow\dfrac{AF}{AE}=\dfrac{AC}{AB}\Rightarrow AF.AB=AE.AC\)
đó vậy là xong ý a rồi những ý khác tương tự. Bạn phải biết cách chọn tỉ số chính xác ở bài toán này nhá :3
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc EAB chung
=>ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE*AC=AB*AF
b: Xét ΔHFB vuông tại Fvà ΔHEC vuông tại E có
góc FHB=góc EHC
=>ΔHFB đồng dạng vơi ΔHEC
=>HF/HE=HB/HC
=>HF*HC=HB*HE
c: Xét ΔBFH vuông tại F và ΔBEA vuông tại E có
góc FBH chung
=>ΔBFH đồng dạng với ΔBEA
=>BF/BE=BH/BA
=>BF*BA=BH*BE
d: Xét ΔCEH vuông tại E và ΔCFA vuông tại F có
góc ECH chung
=>ΔCEH đồng dạng với ΔCFA
=>CE/CF=CH/CA
=>CE*CA=CF*CH
<Tự vẽ hình nha>
a)Xét ΔABE và ΔACF
góc AEB=góc AFC
góc BEA=góc CFA
Vậy ΔABE ∼ ΔACF(g.g)
⇒\(\dfrac{AB}{AC}\)=\(\dfrac{AE}{AF}\)⇔AB.AF=AE.AC
⇒\(\dfrac{AB}{AF}\)=\(\dfrac{AE}{AC}\)
b)Xét ΔAEF và ΔABC
Góc A:chung
\(\dfrac{AB}{AF}\)=\(\dfrac{AE}{AC}\)(cmt)
Vậy ΔAEF∼ΔABC (g.g)
a: Xét ΔABE và ΔACF có
góc AEB=góc AFC
góc A chung
=>ΔABE đồng dạng với ΔACF
=>AE/AF=AB/AC
=>AE/AB=AF/AC
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc FAE chung
=>ΔAEF đồng dạng với ΔABC
=>FE/BC=AE/AB
=>FE*AB=AE*BC
a: Xét ΔABE và ΔACF có
góc AEB=góc AFC
góc BAE chung
=>ΔABE đồng dạng với ΔACF
b: ΔABE đồng dạng với ΔACF
=>AE/AF=AB/AC
=>AE/AB=AF/AC
Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc FAE chung
=>ΔAEF đồng dạng với ΔABC
=>EF/BC=AE/AB
=>AE*BC=AB*EF
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
\(\widehat{BAE}\) chung
Do đó: ΔABE\(\sim\)ΔACF
Suy ra: \(\dfrac{AB}{AC}=\dfrac{AE}{AF}\)
hay \(AF\cdot AB=AE\cdot AC\)
b: Ta có: \(\dfrac{AB}{AC}=\dfrac{AE}{AF}\)
nên \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
Xét ΔAEF và ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
\(\widehat{FAE}\) chung
Do đó: ΔAEF\(\sim\)ΔABC
Bạn tham khảo lời giải tại đây:
https://hoc24.vn/cau-hoi/cho-abc-nhon-abac-co-2-duong-cao-ad-va-be-cat-nhau-tai-ha-cm-hea-sim-hdbb-ke-dk-perp-ac-tai-k-cm-cd2-ckcac-goi-n-la-trung.627636349016
sao không thấy ạ? bài đó là bài cũ ạ