K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Cho G là trọng tâm △ABC. Qua G vẽ đường thẳng song song AB và AC cắt BC lần lượt tại D, E. Chứng minh: a)\(\frac{BD}{BC}=\frac{1}{3}\) b)\(BD=DE=EC\) Bài 2: Đường thẳng d cắt các cạnh AB, AD và các đường chéo AC của hình bình hành ABCD lần lượt tại E, F, O. Chứng minh: \(\frac{AB}{AE}+\frac{AD}{AF}=\frac{AC}{AO}\) Bài 3: Cho A', B', C' lần lượt nằm trên cạnh BC, AC, AB của △ABC. Biết rằng AA',...
Đọc tiếp

Bài 1: Cho G là trọng tâm △ABC. Qua G vẽ đường thẳng song song AB và AC cắt BC lần lượt tại D, E. Chứng minh:

a)\(\frac{BD}{BC}=\frac{1}{3}\)

b)\(BD=DE=EC\)

Bài 2: Đường thẳng d cắt các cạnh AB, AD và các đường chéo AC của hình bình hành ABCD lần lượt tại E, F, O.

Chứng minh: \(\frac{AB}{AE}+\frac{AD}{AF}=\frac{AC}{AO}\)

Bài 3: Cho A', B', C' lần lượt nằm trên cạnh BC, AC, AB của △ABC. Biết rằng AA', BB', CC' đồng quy tại M.

Chứng minh:\(\frac{AM}{A'M}=\frac{AB'}{CB'}+\frac{AC'}{BC'}\)

Bài 4: Cho △ABC và trung tuyến AM. Điểm O bất kỳ thuộc AM. F là giao điểm của BO và AC, E là giao điểm của OC và AB. Từ M kẻ đường thẳng song song OC cắt AB tại H và đường thẳng song song OB cắt AC tại K.Chứng minh:

a)EF//HK

b)EF//BC

Bài 5: Cho △ABC, kẻ đường thẳng song song BC cắt AB ở D và cắt AC ở E. Qua C kẻ Cx//AB và cắt DE ở G. Gọi H là giao điểm của AC và BG. Kẻ HI//AB (I thuộc BC).Chứng minh:

a)\(DA.EG=DB.DE\)

b)\(HC^2=HE.HA\)

c)\(\frac{1}{HI}=\frac{1}{AB}+\frac{1}{CG}\)

0
13 tháng 8
Các bước giải:
  1. Sử dụng định lý Thales cho các đường thẳng song song:
    • Vì \(D F\) song song với \(N P\) (\(D F \parallel N P\)) và \(F\) thuộc \(M P\)\(D\) thuộc \(M N\), ta có tam giác \(M D F\) đồng dạng với tam giác \(M N P\).
    • Từ đó, theo định lý Thales, ta có tỉ lệ:\(\frac{M D}{M N} = \frac{M F}{M P} = \frac{D F}{N P}\)
    • Tương tự, vì \(E G\) song song với \(N P\) (\(E G \parallel N P\)) và \(G\) thuộc \(M P\)\(E\) thuộc \(M N\), ta có tam giác \(M E G\) đồng dạng với tam giác \(M N P\).
    • Từ đó, theo định lý Thales, ta có tỉ lệ:\(\frac{M E}{M N} = \frac{M G}{M P} = \frac{E G}{N P}\)
  2. Sử dụng giả thiết \(M D = N E\):
    • Ta có \(M N = M D + D E + E N\).
    • Thay \(N E = M D\) vào, ta có \(M N = M D + D E + M D = 2 M D + D E\).
    • Từ đó suy ra \(D E = M N - 2 M D\).
    • Cũng từ \(M N = 2 M D + D E\), ta có \(M D = \frac{M N - D E}{2}\).
    • Và \(N E = \frac{M N - D E}{2}\).
  3. Xét tỉ lệ của các đoạn thẳng:
    • Từ \(\frac{M D}{M N} = \frac{D F}{N P}\), ta có \(D F = N P \cdot \frac{M D}{M N}\).
    • Từ \(\frac{M E}{M N} = \frac{E G}{N P}\), ta có \(E G = N P \cdot \frac{M E}{M N}\).
  4. Sử dụng giả thiết \(G I \parallel M N\):
    • Vì \(G I \parallel M N\) và \(I\) thuộc \(N P\)\(G\) thuộc \(M P\), ta có tam giác \(P G I\) đồng dạng với tam giác \(P N M\).
    • Từ đó, theo định lý Thales, ta có tỉ lệ:\(\frac{P G}{P M} = \frac{P I}{P N} = \frac{G I}{M N}\)
  5. Liên hệ các đoạn thẳng \(D F\)  \(I P\):
    • Chúng ta cần chứng minh \(D F = I P\).
    • Từ \(D F = N P \cdot \frac{M D}{M N}\), ta cần chứng minh \(I P = N P \cdot \frac{M D}{M N}\).
    • Điều này có nghĩa là ta cần chứng minh \(\frac{P I}{P N} = \frac{M D}{M N}\).
    • Chúng ta biết \(\frac{P I}{P N} = \frac{P G}{P M}\). Vậy ta cần chứng minh \(\frac{P G}{P M} = \frac{M D}{M N}\).
  6. Tính toán \(P G\):
    • Ta có \(M G\) là một đoạn thẳng trên \(M P\).
    • Ta có \(M P = M F + F G + G P\) hoặc \(M P = M G + G P\).
    • Từ \(\frac{M E}{M N} = \frac{M G}{M P}\), ta có \(M G = M P \cdot \frac{M E}{M N}\).
    • Do đó, \(P G = M P - M G = M P - M P \cdot \frac{M E}{M N} = M P \left(\right. 1 - \frac{M E}{M N} \left.\right) = M P \cdot \frac{M N - M E}{M N}\).
    • Vì \(M N - M E = M D\), nên \(P G = M P \cdot \frac{M D}{M N}\).
  7. Kiểm tra tỉ lệ \(\frac{P G}{P M}\):
    • Thay biểu thức của \(P G\) vào tỉ lệ \(\frac{P G}{P M}\):\(\frac{P G}{P M} = \frac{M P \cdot \frac{M D}{M N}}{M P} = \frac{M D}{M N}\)
  8. Kết luận:
    • Ta có \(\frac{P I}{P N} = \frac{P G}{P M}\) (từ bước 4).
    • Ta vừa chứng minh được \(\frac{P G}{P M} = \frac{M D}{M N}\) (từ bước 7).
    • Do đó, \(\frac{P I}{P N} = \frac{M D}{M N}\).
    • Nhân cả hai vế với \(N P\), ta được \(P I = N P \cdot \frac{M D}{M N}\).
    • Mà ta đã có \(D F = N P \cdot \frac{M D}{M N}\) (từ bước 1).
    • Vì vậy, \(D F = I P\).
Bài toán đã được chứng minh.

ta sẽ chứng minh rằng DF = IP với các điều kiện sau :

-tam giác MNP

-trên cạnh MN, lấy các điểm D và E sao cho MD=NE

-qua D và E , vẽ các đường thẳng song song với NP ,cắt MP tại F và M tương ứng

-từ G , kẻ đường thẳng GI // MN , cắt NP tại I

14 tháng 12 2018

Bài 2.

-Hình bn tự vẽ nhé!

Bài làm:

a, Có F là trung điểm của AC (gt)

\(\Rightarrow\)AF=\(\dfrac{1}{2}\)AC (1)

Xét tam giác ABC ta có:

E là trung điểm của AB (gt)

G là trung điểm của BC (gt)

\(\Rightarrow\)EG là đường trung bình của tam giác ABC

\(\Rightarrow\)EG=\(\dfrac{1}{2}\)AC và EG song song với AC hay EG song song với AF (2)

Từ (1) và (2)\(\Rightarrow\)AEGF là hình bình hành.

mà góc A= 90 độ (gt)\(\Rightarrow\)AEGF là hình chữ nhật.

AEGF là hcn nên có AE song song với GF ( Tính chất hcn) hay EB song song với IF (3)

mà EI song song với BF (gt) (4)

Từ (3) và (4)\(\Rightarrow\)BFIE là hình bình hành.

b, Theo a, ta có: BFIE là hình bình hành nên BE=FI (tính chất hình bình hành) và AEGF là hình chữ nhật nên AE=GF (tính chất hình chữ nhật)

mà AE=EB (E là trung điểm của AB)

\(\Rightarrow\)GF=FI.

Xét tứ giác AGCI có: FA=FC (F là trung điểm của AC), GF=FI (cmt)

\(\Rightarrow\)AGCI là hình bình hành.

mà GI vuông góc với AC nên hình bình hành AGCI là hình thoi

c, Theo b, ta có: AGCI là hình thoi

Để tứ giác (hình thoi) AGCI là hình vuông thì góc AGC= 90 độ hay AG vuông góc với BC.

Khi đó AG là đường cao của tam giác ABC

Mặt khác AC là đường trung tuyến của tam giác ABC ( G lf trung điểm của BC)\(\Rightarrow\) Tam giác ABC cân tại A

mà tam giác ABC vuông tại (gt) nên tam giác ABC vuông cân tại A thì AGCI là hình vuông.

26 tháng 11 2016

hình như có dùng cái định lí j ấy nhỉ, quên rồi hình như là toi-llét thì phải, quên tên rồi khó áp dụng đấy :V