K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2017

muốn giúp lắm nhưng mới lớp 7 chỉ bt làm phần a,d nghĩ bài a,d là toán lớp 7

4 tháng 7 2018

ai k dung mik giai cho

a: BC=căn 6^2+8^2=10cm

BH=AB^2/BC=3,6cm

CH=10-3,6=6,4cm

sin ABC=AC/BC=4/5

=>góc ABC=53 độ

b: ΔAHB vuông tại H có HE là đường cao

nên AE*AB=AH^2

ΔAHC vuông tại H có HF là đường cao

nên AF*AC=AH^2

=>AE*AB=AF*AC

=>AE/AC=AF/AB

=>ΔAEF đồng dạng với ΔACB

c: góc AEH=góc AFH=góc FAE=90 độ

=>AEHF là hình chữ nhật

góc KAC+góc AFE

=góc AHE+góc KCA

=góc ABC+góc ACB=90 độ

=>AK vuông góc EF

3 tháng 10 2021

Áp dụng Pytago: \(AC=\sqrt{BC^2-AB^2}=8\left(cm\right)\)

Áp dụng HTL:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=3,6\left(cm\right)\\CH=\dfrac{AC^2}{BC}=6,4\left(cm\right)\end{matrix}\right.\)

Ta có \(\sin\widehat{ACB}=\dfrac{AB}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\approx\sin37^0\Leftrightarrow\widehat{ACB}\approx37^0\)

3 tháng 10 2021

nhầm chỗ HTL nhé

Áp dụng HTL:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AH\cdot BC=AC\cdot AB\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=3,6\left(cm\right)\\AH=\dfrac{AC\cdot AB}{BC}=4,8\left(cm\right)\end{matrix}\right.\)

NV
18 tháng 7 2021

Kẻ đường cao AD, đặt \(AB=x>0\) ; \(BD=y>0\)

\(\Rightarrow AC=12-x\) ; \(CD=8-y\)

Trong tam giác vuông ABD:

\(BD=AB.cosB\Leftrightarrow y=x.cos60^0=\dfrac{x}{2}\) \(\Rightarrow CD=8-\dfrac{x}{2}\) 

Theo định lý Pitago:

\(\left\{{}\begin{matrix}AD^2=AB^2-BD^2\\AD^2=AC^2-CD^2\end{matrix}\right.\) \(\Rightarrow AB^2-BD^2=AC^2-CD^2\)

\(\Leftrightarrow x^2-\left(\dfrac{x}{2}\right)^2=\left(12-x\right)^2-\left(8-\dfrac{x}{2}\right)^2\)

\(\Leftrightarrow16x-80=0\)

\(\Rightarrow x=5\)

Vậy \(\left\{{}\begin{matrix}AB=5\\AC=7\end{matrix}\right.\)

NV
18 tháng 7 2021

undefined

21 tháng 10 2021

a, BC=BH+HC=8BC=BH+HC=8

Áp dụng HTL: 

⎧⎪⎨⎪⎩AB2=BH⋅BC=16AC2=CH⋅BC=48AH2=CH⋅BC=12⇒⎧⎪ ⎪⎨⎪ ⎪⎩AB=4(cm)AC=4√3(cm)AH=2√3(cm){AB2=BH⋅BC=16AC2=CH⋅BC=48AH2=CH⋅BC=12⇒{AB=4(cm)AC=43(cm)AH=23(cm)

b,b, Vì K là trung điểm AC nên AK=12AC=2√3(cm)AK=12AC=23(cm)

Ta có tanˆAKB=ABAK=42√3=2√33≈tan490tan⁡AKB^=ABAK=423=233≈tan⁡490

⇒ˆAKB≈490

22 tháng 7 2021

a)Áp dụng hệ thức lượng trong tam giác vuông có:
\(AB^2=BH.BC\Leftrightarrow BC=\dfrac{AB^2}{BH}=5\)(cm)

\(HC=BC-HB=5-1,8=3,2\)(cm)

\(HA^2=HB.HC\Leftrightarrow HA=\sqrt{HB.HC}=\sqrt{1,8.3,2}=2,4\)(cm)

\(AC^2=HC.BC\Leftrightarrow AC=\sqrt{HC.BC}=\sqrt{3,2.5}=4\) (cm)

Vậy...

b) Dễ cm được AIMK là hcn (vì tứ giác có 3 góc vuông)

\(\Rightarrow AM=IK\)

Do AM là đường trung tuyến trong tam giác vuông ABC

\(\Rightarrow AM=\dfrac{BC}{2}=2,5\) (cm)

Vậy IK=2,5cm

a)

Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:

\(AH^2+HB^2=AB^2\)

\(\Leftrightarrow AH^2=3^2-1.8^2=5.76\)

hay AH=2,4(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow HC=\dfrac{2.4^2}{1.8}=3.2\left(cm\right)\)

Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:

\(AC^2=AH^2+CH^2\)

\(\Leftrightarrow AC^2=2.4^2+3.2^2=16\)

hay AC=4(cm)

15 tháng 11 2023

a: ΔABC vuông tại A

=>\(BC^2=AB^2+AC^2\)

=>\(BC^2=6^2+8^2=100\)

=>\(BC=\sqrt{100}=10\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot10=6\cdot8=48\)

=>AH=48/10=4,8(cm)

Xét ΔABC vuông tại A có

\(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\)

nên \(\widehat{C}\simeq37^0\)

ΔABC vuông tại A

=>\(\widehat{ABC}+\widehat{ACB}=90^0\)

=>\(\widehat{ABC}=90^0-37^0=53^0\)

b: ΔABC vuông tại A

mà AM là đường trung tuyến

nên MA=MC=MB=BC/2

Xét ΔMAC có MA=MC

nên ΔMAC cân tại M

=>\(\widehat{MAC}=\widehat{MCA}=\widehat{ACB}\left(1\right)\)

\(\widehat{ACB}+\widehat{ABC}=90^0\)(ΔABC vuông tại A)

\(\widehat{HAB}+\widehat{ABH}=90^0\)(ΔABH vuông tại H)

Do đó: \(\widehat{ACB}=\widehat{HAB}\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{MAC}=\widehat{HAB}\)

c: Xét tứ giác AEHF có

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

=>AEHF là hình chữ nhật

=>\(\widehat{AFE}=\widehat{AHE}\)

mà \(\widehat{AHE}=\widehat{ABC}\left(=90^0-\widehat{HAB}\right)\)

nên \(\widehat{AFE}=\widehat{ABC}\)

\(\widehat{AFE}+\widehat{MAC}\)

\(=\widehat{ABC}+\widehat{ACB}=90^0\)

=>FE vuông góc AM tại K

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}BH=\dfrac{6^2}{10}=3,6\left(cm\right)\\CH=\dfrac{8^2}{10}=6,4\left(cm\right)\end{matrix}\right.\)

Xét ΔHAB vuông tại H có HE là đường cao

nên \(HA^2=AE\cdot AB\)

=>\(AE\cdot6=4,8^2\)

=>\(AE=3,84\left(cm\right)\)

Xét ΔHAC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\)

=>\(AF=\dfrac{4.8^2}{8}=2,88\left(cm\right)\)

Xét ΔAEF vuông tại A có AK là đường cao

nên \(\dfrac{1}{AK^2}=\dfrac{1}{AE^2}+\dfrac{1}{AF^2}\)

=>\(\dfrac{1}{AK^2}=\dfrac{1}{2,88^2}+\dfrac{1}{3.84^2}\)

=>AK=2,304(cm)