Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có BD là phân giác
nên AD/AB=CD/BC
=>AD/15=CD/10
=>AD/3=CD/2=(AD+CD)/(3+2)=15/5=3
=>AD=9cm; CD=6cm
b: BE vuông góc BD
=>BE là phân giác góc ngoài tại B
=>EC/EA=BC/BA
=>EC/(EC+15)=10/15=2/3
=>3EC=2EC+30
=>EC=30cm
Vì BD là đường phân giác của A B C ^ nên: A D D C = A B B C
Suy ra: A D D C + A D = A B B C + A B (theo tính chất dãy tỉ số bằng nhau)
⇒ A D A C = A B B C + A B
Mà tam giác ABC cân tại A nên AC = AB = 15cm
Đáp án: C
a: Xét ΔABC vuông tại A và ΔDEF vuông tại D có
AB/DE=AC/DF
Do đó: ΔABC\(\sim\)ΔDEF
b: \(\dfrac{C_{ABC}}{C_{DEF}}=\dfrac{AB}{DE}=\dfrac{2}{3}\)
a: Xét ΔABD và ΔECD có
góc ADB=góc EDC
góc ABD=góc ECD
=>ΔABD đồng dạng với ΔECD
b: AD là phân giác
=>DB/AB=DC/AC
=>DB/8=DC/12
=>DB/2=DC/3=(DB+DC)/(2+3)=15/5=3
=>DB=6cm; DC=9cm
a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{B}\) chung
Do đó: ΔABC\(\sim\)ΔHBA(g-g)
Suy ra: \(\dfrac{AB}{HB}=\dfrac{BC}{BA}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AB^2=BC\cdot BH\)(đpcm)
mình nghĩ nên đẩy ý b) lên trước vì đã tính AC đâu mà có tỉ số :D
a) Áp dụng định lí Pythagoras cho ΔvuôngABC ta có :
BC2 = AB2 + AC2
=> \(AC=\sqrt{BC^2-AB^2}=\sqrt{15^2-9^2}=12\left(cm\right)\)
b) Tỉ số hai đoạn thẳng AB và AC : AB/AC = 9/12 = 3/4
c) Vì CD là phân giác của ^C nên theo tính chất đường phân giác trong tam giác ta có : \(\frac{AD}{AC}=\frac{BD}{BC}\)
Áp dụng tính chất dãy tí số bằng nhau ta có : \(\frac{AD}{AC}=\frac{BD}{BC}=\frac{AD+BD}{AC+BC}=\frac{AB}{AC+BC}=\frac{9}{12+15}=\frac{1}{3}\)
=> \(\hept{\begin{cases}\frac{AD}{AC}=\frac{1}{3}\\\frac{BD}{BC}=\frac{1}{3}\end{cases}}\Rightarrow\hept{\begin{cases}AD=\frac{1}{3}AC=4\left(cm\right)\\BC=\frac{1}{3}BC=5\left(cm\right)\end{cases}}\)
Áp dụng tính chất đường phân giác trong tam giác ABC, ta có: B A A D = B C C D
⇒ 10 6 = 15 C D ⇔ C D = 6.15 10 = 9 c m
=> AC = AD + DC = 6 + 9 = 15cm
Đáp án: D