Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a. Trong tam giác AOB, ta có:
P trung điểm của OA (gt)
Q trung điểm của OB (gt)
Suy ra: PQ là đường trung bình của ∆ OAB.
Suy ra: PQ=12ABPQ=12AB
(tính chất đường trung bình của tam giác )
Suy ra: PQAB=12PQAB=12 (1)
Trong tam giác OAC, ta có:
P trung điểm của OA (gt)
R trung điểm của OC (gt)
Suy ra: PR là đường trung bình của tam giác OAC.
Suy ra: PR=12ACPR=12AC (tính chất đường trung bình của tam giác )
Suy ra: PRAC=12PRAC=12 (2)
Trong tam giác OBC, ta có:
Q trung điểm của OB (gt)
R trung điểm của OC (gt)
Suy ra: QR là đường trung bình của tam giác OBC.
Suy ra: QR=12BCQR=12BC (tính chất đường trung bình của tam giác )
Suy ra: QRBC=12QRBC=12 (3)
Từ (1), (2) và (3) suy ra: PQAB=PRAC=QRBC=12PQAB=PRAC=QRBC=12
Vậy ∆ PQR đồng dạng ∆ ABC (c.c.c)
b. Gọi p’ là chu vi tam giác PQR.
Ta có: PQAB=PRAC=QRBC=PQ+PR+QRAB+AC+BC=p′pPQAB=PRAC=QRBC=PQ+PR+QRAB+AC+BC=p′p
Vậy: p′p=12⇒p′=12p=12.543=271,5p′p=12⇒p′=12p=12.543=271,5 (cm)
Bài 1:
a)
Góc ở đáy = (180o-50o) : 2 = 65o
b)
Góc ở đỉnh = 180o - (50o x 2) = 80o
a: góc ABC=180-50-70=60 độ
b: Vì góc IBC=1/2*góc ABC
nên BI là phân giác của góc ABC
Vì góc ICB=1/2*góc ACB
nên CI là phân giác của góc ACB
c: Xét ΔBFI vuông tại F và ΔBDI vuông tại D có
BI chung
góc FBI=góc DBI
=>ΔBFI=ΔBDI
=>ID=IF
Xét ΔCDI vuông tại D và ΔCEI vuông tại E co
CI chung
góc DCI=góc ECI
=>ΔCDI=ΔCEI
=>ID=IE=IF
=>I là giao của 3 đường trung trực ΔDEF
Ta có : \(\widehat{A}=80^o;\widehat{B}=50^o\Rightarrow\widehat{C}=180^o-\widehat{A}-\widehat{B}=180^o-80^o-50^o=50^o\)
\(\Rightarrow\widehat{C}=\widehat{B}< \widehat{A}\)
\(a,\) Cạnh lớn nhất là cạnh BC, bé nhất là cạnh AC
\(b,\) Tam giác ABC là tam giác cân vì có \(\widehat{C}=\widehat{B}=45^o\)
GK=9cm
nên AC=9cm
BC=13,5cm
MN=7cm
nên AB=7cm
\(C_{ABC}=C_{MNP}=C_{GHK}=29,5\left(cm\right)\)
Theo tổng 3 góc trong của 1 tam giác
góc A + góc B + góc C = 180 độ
góc A = 180 độ - góc B - góc C
góc A = 180 độ - 70 độ - 50 độ
góc A = 60 độ
a) Theo quan hệ giữa góc và cạnh đối diện:
Vì góc B > góc A > góc C
Suy ra cạnh AC>BC>AB
b) Xét tam giác OBD và tam giác OAC có:
OA=OB
OC=OD
góc DOB = góc COA (đối đỉnh)
=> tam giác OBD = tam giác OAC (c.g.c)
=> góc OAC = góc OBD (góc tương ứng)
mà chúng so le trong
nên AC // BD
Ta có :\(\widehat{A}+\widehat{B}+\widehat{C}=180\)
\(\Rightarrow\widehat{A}=180-\left(\widehat{B}+\widehat{C}\right)=180-\left(70+50\right)=60\)
Ta lại có : \(\widehat{B}>\widehat{A}>\widehat{C}\left(70>60>50\right)\)
\(\Rightarrow AC>BC>AB\)
a,
\(\Delta ABC=\Delta PQR\\ \Rightarrow\widehat{A}=\widehat{P}=50^o\\ \widehat{B}=\widehat{Q}\)
Xét \(ABC\) có
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow\widehat{B}+\widehat{C}=130^o\\ \Rightarrow\widehat{B}=130^o-\widehat{C}\)
\(\widehat{B}-\widehat{C}=50^o\\ \Rightarrow130^o-2\widehat{C}=50^o\\ \Rightarrow\widehat{C}-40^o\\ \Rightarrow\widehat{B}=90^o=\widehat{Q}\)
\(\Rightarrow PQR\) là tam giác vuông
b, \(\Delta ABC=\Delta PQR\\ \Rightarrow\left\{{}\begin{matrix}AC=PR\\AB=PQ\\BC=QR\end{matrix}\right.\)