Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì ΔABC đồng dạng với ΔMNP nên A B M N = A C M P = B C N P hay 5 10 = A C 5 = 6 N P
=> AC = 5.5 10 = 2,5; NP = 6.10 5 = 12
Vậy NP = 12cm, AC = 2,5cm
Đáp án: A
Ta có:
M N B C = 3 6 = 1 2 , P N C A = 2 , 5 5 = 1 2 , P M A B = 2 4 = 1 2 ⇒ M N B C = P N C A = P M A B = 1 2
Vậy ΔPMN ~ ΔABC (c - c - c)
Suy ra tỉ số đồng dạng k của hai tam giác là k = M N B C = 1 2
⇒ S M N P S A B C = k 2 = ( 1 2 ) 2 = 1 4
Đáp án: B
AB/MN=AC/MP=(AB+AC)/(MN+MP)= 10/15=2/3 ( áp dụng tính chất dãy tỉ số bằng nhau)
--) BC=2/3NP=6cm
Chu vi là 10 + 6 = 16cm
a: Xét ΔHNM vuông tại H và ΔMNP vuông tại M có
góc N chung
=>ΔHMN đồng dạng vói ΔMNP
b: \(NP=\sqrt{9^2+12^2}=15\left(cm\right)\)
MH=9*12/15=108/15=7,2cm
HP=12^2/15=9,6cm
S MHP=1/2*9,6*7,2=34,56cm2
Vì ΔABC đồng dạng với ΔMNP nên A B M N = A C M P = B C N P hay 2 6 = A C 6 = 3 N P
=> AC = 2.6 6 = 2; NP = 6.3 2 = 9
Vậy NP = 9cm, AC = 2cm nên A, B đúng.
Tam giác ABC cân tại A, MNP cân tại M nên C đúng, D sai.
Đáp án: D