Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho a',b',c' là số đo cạnh của tam giác A'B'C'
a,b,c là số đo cạnh của tam giác ABC
a) Theo đề bài ta có: \(\frac{a'}{a}=\frac{b'}{b}=\frac{c'}{c}=k=\frac{3}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có: \(\frac{a'}{a}=\frac{b'}{b}=\frac{c'}{c}=\frac{a'+b'+c'}{a+b+c}=\frac{P_{A'B'C'}}{P_{ABC}}=k=\frac{3}{5}\)
Vậy tỉ số chu vi hai tam giác đã cho là 3/5
b) Chu vi tam giác ABC là: \(P_{ABC}=40:\left(5-3\right)\cdot5=100\left(dm\right)\)
Chu vi tam giác A'B'C' là: \(P_{A'B'C'}=P_{ABC}-40dm=100dm-40dm=60\left(dm\right)\)
A B C A' B' C'
a, Gọi CV tam giác A'B'C' là P', ABC là P
\(\Delta A'B'C'~\Delta ABC\)theo tỉ số đồng dạng \(k=\frac{3}{5}\)
\(\Rightarrow\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{C'A'}{CA}=\frac{3}{5}\)
Áp dụng t/c DTSBN , ta có :
\(\frac{3}{5}=\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{C'A'}{CA}\)
\(=\frac{A'B'+B'C'+C'A'}{AB+BC+CA}=\frac{P'}{P}\)
Vậy tỉ số chu vi tam giác A'B'C' và ABC là \(\frac{3}{5}\)
Hướng dẫn cách hack VIP OLM Vĩnh Viễn siêu dễ chỉ 10 phút là xong: youtube.com/watch?v=zYcnHqUcGZE&t
đề có sai hay nhầm chỗ nào ko bn , câu b mk tính ra số ko đẹp
a) Gọi chu vi tam giác A’B’C’ là P’ và chu vi tam giác ABC là P.
ΔA'B'C' ΔABC theo tỉ số đồng dạng k = 3/5
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
Vậy tỉ số chu vi tam giác A’B’C’ và tam giác ABC là 3/5
⇒ P = 100 ⇒ P’ = 60.
Vậy chu vi tam giác ABC bằng 100dm và chu vi tam giác A’B’C’ là 60dm.
`a) ΔA'B'C' ∼ ΔABC` theo tỉ lệ đồng dạng `k = 2/5`
`=> (A'B')/(AB) = (A'C')/(AC) = (B'C')/(BC) = 2/5`
Theo tính chất dãy tỉ số bằng nhau
`=> (A'B')/(AB) = (A'C')/(AC) = (B'C')/(BC) = (A'B' + A'C' + B'C')/(AB + AC + BC) = 2/5`
`=> (PΔA'B'C')/(PΔABC) = 2/5`
b) Từ a) ta có: `(PΔA'B'C')/(PΔABC) = 2/5`
`=> (PΔA'B'C')/2 = (PΔABC)/5`
Áp dụng tính chất dãy tỉ số bằng nhau:
`=> (PΔA'B'C')/2 = (PΔABC)/5 = (PΔABC - PΔA'B'C')/(5-2) = 30/3 = 10`
`=> PΔA'B'C' = 10 xx 2 = 20 (cm)`
`PΔABC = 10 xx 5 = 50 (cm)`
Ta có : \(\Delta ABC\sim\Delta A'B'C'\)
\(\Rightarrow\dfrac{P_{ABC}}{P_{A'B'C'}}=\dfrac{AB}{A'B'}=\dfrac{2}{7}\)
\(\Rightarrow\dfrac{P_{ABC}}{2}=\dfrac{P_{A'B'C'}}{7}=\dfrac{P_{ABC}+P_{A'B'C'}}{2+7}=\dfrac{180}{9}=20\)
( tính chất dãy tỉ số bằng nhau )
\(\Rightarrow P_{ABC}=2.20=40\left(cm\right)\)
\(\Rightarrow P_{A'B'C'}=20.7=140\left(cm\right)\)
Chu vi tam giác ABC:
\(48:\left(7-3\right).7=84\left(cm\right)\)
Chu vi tam giác HIK:
\(48:\left(7-3\right).3=36\left(cm\right)\)
\(\text{Giả sử ∆A’B’C’ ∽ ∆ABC theo tỉ số k, AM, A’M’ là hai đường trung tuyến tương ứng.}\)
\(\text{∆A’B’C’ ∽ ∆ABC}\)
\(\Rightarrow\widehat{B}=\widehat{B'}\) (1)
và \(\frac{A'B'}{AB}=\frac{B'C'}{BC} \)(2)
\(\text{mà B’C’ = 2B’M’, BC = 2BM}\)(3)
\(\left(1\right),\left(2\right),\left(3\right)\Rightarrow\Delta A'B'M'\)\(\text{đồng dạng }\)\(\Delta ABM\)
\(\Rightarrow\frac{A'M'}{AM}=\frac{A'B'}{AB}=k\)
ΔABC đồng dạng vơi ΔDEF theo hệ số tỉ lệ k=5/2
=>\(\dfrac{C_{ABC}}{C_{DEF}}=\dfrac{5}{2}\)
=>\(\dfrac{C_{ABC}}{5}=\dfrac{C_{DEF}}{2}=\dfrac{1890}{7}=270\)
=>\(C_{ABC}=1350\left(cm\right);C_{DEF}=540\)