Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì ΔABC vuông tại A
==> BC2 = AC2 +AB2 ( Định lý Pitago )
BC2 = 42 + 32
BC2 = 27
==> BC = √27
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=3^2+4^2=25\)
hay BC=5(cm)
Vậy: BC=5cm
Để so sánh \(\widehat{A_1}\)và \(\widehat{A_2}\),ta đưa chúng về một tam giác.Trên tia đối của tia MA,lấy điểm D sao cho MD = MA
Xét \(\Delta AMB\)và \(\Delta DMC\)có :
AM = DM(cmt)
\(\widehat{MAB}=\widehat{MDC}\)
MB = MC(vì M là trung điểm của BC)
=> \(\Delta AMB=\Delta DMC\left(c-g-c\right)\)
=> \(\widehat{A_1}=\widehat{D}\)(hai góc tương ứng)(1)
\(AB=CD\)(hai cạnh tương ứng)
Ta có : AC > AB, AB = CD nên AC > CD
\(\Delta ACD\)có AC > CD nên \(\widehat{D}>\widehat{A_2}\)(2)
Từ (1) và (2) => \(\widehat{A_1}>\widehat{A_2}\)hay \(\widehat{MAC}< \widehat{BAM}\)
Câu 2:
a: ΔDEF vuông tại E
=>\(\widehat{EDF}+\widehat{EFD}=90^0\)
=>\(\widehat{EFD}+30^0=90^0\)
=>\(\widehat{EFD}=60^0\)
ΔDEF vuông tại E
=>\(ED^2+EF^2=FD^2\)
=>\(ED^2=10^2-6^2=64\)
=>\(ED=\sqrt{64}=8\left(cm\right)\)
b: Xét ΔIFE và ΔIDP có
\(\widehat{IFE}=\widehat{IDP}\)(hai góc so le trong, EF//DP)
IF=ID
\(\widehat{FIE}=\widehat{DIP}\)(hai góc đối đỉnh)
Do đó: ΔIFE=ΔIDP
=>IE=IP
Câu 1:
a: ΔABC vuông tại A
=>\(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\widehat{ACB}=90^0-50^0=40^0\)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=5^2-3^2=16\)
=>\(AC=\sqrt{16}=4\left(cm\right)\)
b: Xét ΔMAB và ΔMDC có
\(\widehat{MBA}=\widehat{MCD}\)(hai góc so le trong, BA//CD)
MB=MC
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
Do đó: ΔMAB=ΔMDC
=>MA=MD
MN=AB=4cm
NE=BC=3cm
\(\widehat{M}=\widehat{A}=50^0\)
Vì ΔABC = ΔMNE
nên:
+)MN=AB=4cm
+)NE=BC=3cm
+)góc A=góc M=50 độ
vậy:
+)MN=4cm
+)BC=3cm
+)góc M=50 độ