Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: APC + APB = 180 (2 góc kề bù)
=> 60 + APB = 180
=> APB = 120
Xét tam giác ABP có:
B + A + P = 180 (tổng 3 góc trong tam giác)
45 + BAP + 120 = 180
=> BAP = 15
Vì PC = 2PB
=> PAC = 2 PAB = 2.15 = 30
Xét tam giác PAC, có: PAC + APC + C = 180 (tổng 3 góc trong tam giác)
30 + 60 + C = 180
=> ACB = 90
- Trên tia đối AB lấy I sao cho AI = AB
- Vẽ hình chữ nhật AINC ( IN // AC ; IN = AC )
Do AB = 1/3 AC => AD = AB => AD=AI . Lấy M thuộc IN sao cho IM = AD
Ta có hình vuông IAMD => IA = IM = MD = DA
Xét tam giác MBI và tam giác CMN
MI=NC (và IANC là hình chữ nhật)
BI=MN ( vìIA=1/3 IN và IA = IM => IM=1/2 MN)
=> góc I = góc M =90 độ (gt)
<=> tg MBI = tg CMI (c - g - c)
=> góc MBI = góc CMN ; BM = CM ⇒ BMC cân ở M
Xét tg BIM và tg EAB
AB = MI
AE = BI
góc I= góc A =90 độ
<=> tg BIM = tg EAB (c - g - c)
=>góc MBI = góc AEB (góc tương ứng)
Ta có:
góc IMB +góc BAM = 90 độ
Mà: góc MBA = góc CMN
=> góc IBM + CMN = 90 độ
=> tg BMC vuông ở M (2)
Từ (1) và (2)
=> Tam giac MCB vuông cân ở M.
=> Góc MCB = 45 độ hay góc ACB+MCD =45 độ
Lại có:
Góc MCD=CMN=MBI=AEB
=> góc ACB+AEB=45 độ (Đpcm)
Xét hai tam giác ABC và DEF có:
\(\begin{array}{l}AB = DE\\AC = DF\\\widehat {BAC} = \widehat {EDF} (= {60^\circ })\end{array}\)
\(\Rightarrow \Delta ABC = \Delta DEF\)(c.g.c)
Do đó:
\(BC=EF = 6cm\) ( 2 cạnh tương ứng)
\( \widehat {ABC} =\widehat {DEF}= {45^o}\) (2 góc tương ứng)
\(\begin{array}{l}\widehat {BAC} + \widehat {ABC} + \widehat {ACB} = {180^o}\\ \Rightarrow {60^o} + {45^o} + \widehat {ACB} = {180^o}\\ \Rightarrow \widehat {ACB} = {75^o}\end{array}\)
\( \Rightarrow \widehat {EFD} = \widehat {ACB} = {75^o}\)