K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2018

A B C K

Kẻ tia phân giác BK cắt AC tại K

\(\Rightarrow\widehat{ABK}=\widehat{CBK}=\dfrac{\widehat{ABC}}{2}\)

Mà ta có \(\widehat{B}=2\widehat{C}\)

Suy ra \(\widehat{ABK}=\widehat{KBC}=\widehat{KCB}\)

Xét △BKC có

\(\widehat{KBC}=\widehat{KCB}\)(cmt)

Suy ra △BKC cân tại K\(\Rightarrow BK=KC\)

Xét △ABK và △ACB có

\(\widehat{A}\) chung

\(\widehat{ABK}=\widehat{KCB}\)(cmt)

Suy ra △ABK ∼ △ACB(g.g)

\(\Rightarrow\dfrac{AB}{AC}=\dfrac{BK}{BC}\Rightarrow AC.BK=AB.BC\Rightarrow AC.BK=8.10=80\Rightarrow AC.KC=80\left(1\right)\)

Ta có △ABK ∼ △ACB\(\Rightarrow\dfrac{AB}{AC}=\dfrac{AK}{AB}\Rightarrow AC.AK=AB^2\Rightarrow AC.AK=8^2=64\left(2\right)\)

Cộng (1),(2)\(\Rightarrow AC.KC+AC.AK=80+64\Rightarrow AC\left(KC.AK\right)=144\Rightarrow AC.AC=144\Rightarrow AC^2=144\Rightarrow AC=12\left(cm\right)\)

b) Giả sử AC>BC>AB

Đặt AB=x(x∈N*)\(\Rightarrow BC=x+1\Rightarrow AC=x+2\)

Theo câu a, ta có △ABK ∼ △ACB

\(\Rightarrow\dfrac{AB}{AC}=\dfrac{BK}{BC}\Rightarrow AB.BC=BK.AC\Rightarrow AB.BC=KC.AC\Rightarrow x\left(x+1\right)=\left(x+2\right)KC\left(3\right)\)

ta có △ABK ∼ △ACB\(\Rightarrow\dfrac{AB}{AC}=\dfrac{AK}{AB}\Rightarrow AB^2=AK.AC\Rightarrow x^2=\left(x+2\right)AK\left(4\right)\)

Cộng (3),(4)\(\Rightarrow x\left(x+1\right)+x^2=\left(x+2\right)KC+\left(x+2\right).AK\Leftrightarrow x^2+x+x^2=\left(x+2\right)\left(KC+AK\right)\Leftrightarrow2x^2+x=\left(x+2\right).AC\Leftrightarrow2x^2+x=\left(x+2\right)^2\Leftrightarrow2x^2+x=x^2+4x+4\Leftrightarrow x^2-3x-4=0\Leftrightarrow x^2+x-4x-4=0\Leftrightarrow x\left(x+1\right)-4\left(x+1\right)=0\Leftrightarrow\left(x+1\right)\left(x-4\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}x+1=0\\x-4=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=-1\left(ktm\right)\\x=4\left(tm\right)\end{matrix}\right.\)

Vậy x=4\(\Rightarrow AB=4\Rightarrow BC=5\Rightarrow AC=6\)

Cho một tam giác ABC vuông tại A có \(\widehat{B}=\dfrac{1}{2}\widehat{C}\). Kẻ đường cao AH sao cho cạnh AH vuông góc với cạnh huyền BC tại H. Các hình chiếu của AB và AC trên BC lần lượt là BH và HC. Biết HC = 1,6cm. a) Tính góc B và C, và các tỉ số lượng giác của chúng nó. b*) Tính độ dài các cạnh BC, AB và AC. Gợi ý: Sử dụng các hệ thức về tỉ số lượng giác của góc nhọn và một trong bốn hệ thức về cạnh góc...
Đọc tiếp

Cho một tam giác ABC vuông tại A có \(\widehat{B}=\dfrac{1}{2}\widehat{C}\). Kẻ đường cao AH sao cho cạnh AH vuông góc với cạnh huyền BC tại H. Các hình chiếu của AB và AC trên BC lần lượt là BH và HC. Biết HC = 1,6cm.

a) Tính góc B và C, và các tỉ số lượng giác của chúng nó.

b*) Tính độ dài các cạnh BC, AB và AC.

Gợi ý: Sử dụng các hệ thức về tỉ số lượng giác của góc nhọn và một trong bốn hệ thức về cạnh góc vuông và đường cao trong tam giác vuông để tính.

c) Tính độ dài các cạnh AH và BH.

d) Hãy chứng minh rằng: Cả ba tam giác vuông ABC, HBA và HAC đồng dạng với nhau.

e*) Chứng minh rằng: \(\dfrac{\sin\widehat{HAC}}{\cos\widehat{HBA}}\div\dfrac{\tan\widehat{HAC}}{\cot\widehat{ABC}}=\dfrac{csc^2\widehat{ABC}}{sec^2\widehat{ABC}\cdot\cot\widehat{HBA}}\)

Gợi ý:

1. Secant - sec α nghịch đảo với cos α

2. Cosecant - csc α nghịch đảo với sin α

0
3 tháng 12 2018

Hình tự vẽ

Dễ dàng cm:AC lớn nhất.

Trên AC lấy D sao cho \(\widehat{CBD}=\widehat{CAB}\)

\(\Rightarrow\Delta BCD\sim\Delta ACB\left(g.g\right)\)

\(\Rightarrow BC^2=AC.CD=AC\left(AC-AD\right)\)(1)

Lại có:\(\widehat{B}=\widehat{A}+2\widehat{C}\)

\(\Rightarrow\widehat{DBA}=90^0-\dfrac{\widehat{A}}{2}\)

\(\Rightarrow\Delta ABD\) cân tại A

\(\Rightarrow\left(1\right)\Leftrightarrow BC^2=AC\left(AC-AB\right)\)

Đặt ẩn giải tiếp

3 tháng 12 2018

A B C cạnh AC cạnh AB cạnh BC

2 tháng 1 2018

J A B C O E D H K M N

a) Xét hai tam giác ABD và ACE có:

\(\widehat{A}\) chung

\(\widehat{ADB}=\widehat{AEC}=90^o\)

\(\Rightarrow\Delta ABD\sim\Delta ACE\left(g-g\right)\)

\(\Rightarrow\frac{AB}{AC}=\frac{AD}{AE}\Rightarrow AD.AC=AE.AB\)

b) Xét tam giác ABC có BD và CE là hai đường cao nên H là trực tâm. Vậy thì AH vuông góc với BC tại K.

c) Ta thấy AMO; AKO; ANO là các tam giác vuông có chung cạnh huyền AO nên A, M, K, O, N cùng thuộc đường tròn đường kính AO.

Khi đó \(\widehat{AKN}=\widehat{AMN}\)  (Hai góc nội tiếp cùng chắn cung AN)

Lại có AM = AN nên \(\widehat{AMN}=\widehat{ANM}\)

Suy ra \(\widehat{AKN}=\widehat{ANM}\)

d) Gọi J là giao điểm của MN với AO.

Xét tam giác vuông ANO, đường cao NJ, ta có:

\(AJ.AO=AN^2\)  (Hệ thức lượng)

Lại có \(\Delta AHJ\sim\Delta AOK\left(g-g\right)\Rightarrow\frac{AH}{AO}=\frac{AJ}{AK}\)

\(\Rightarrow AJ.AO=AH.AK\)

\(\Rightarrow AN^2=AH.AK\)

\(\Rightarrow\Delta AHN\sim\Delta ANK\left(c-g-c\right)\Rightarrow\widehat{ANH}=\widehat{AKN}\)

Mà \(\widehat{AKN}=\widehat{ANM}\Rightarrow\widehat{ANH}=\widehat{ANM}\) hay M, N, H thẳng hàng.

3 tháng 12 2019

Hoàng Thị Thu Huyền ơi ngộ nhận kìa. ý d đang chứng minh thẳng hàng mà bạn có 2 cái tam giác AHJ và AOK đồng dạng  (g g) thì sao được ??

a) Ta có: ΔABD vuông tại A(gt)

nên A nằm trên đường tròn đường kính BD(Định lí quỹ tích cung chứa góc)

mà BD là đường kính của (O)

nên A\(\in\)(O)(Đpcm)

b) Xét (O) có 

\(\widehat{AKB}\) là góc nội tiếp chắn cung AB

\(\widehat{ADB}\) là góc nội tiếp chắn cung AB

Do đó: \(\widehat{AKB}=\widehat{ADB}\)(Hệ quả góc nội tiếp)

15 tháng 10 2018

A B C D 1 2 1

Trong \(\Delta\)ABC có: ^A = ^B +2.^C => ^A > ^B và ^A > ^C => BC là cạnh lớn nhất trong tam giác ABC.

+) Xét trường hợp: AB < AC < BC. Khi đó; ta đặt: AB = a; AC = a+1; BC = a+2 (Với a thuộc N*)

Trên cạnh BC lấy điểm D sao cho ^BAD = ^ACB, hay ^A1 = ^C (theo hình vẽ)

Xét \(\Delta\)ABC và \(\Delta\)DBA có: ^A1 = ^C; ^B chung => \(\Delta\)ABC ~ \(\Delta\)DBA (g.g)

=> \(\frac{AB}{DB}=\frac{BC}{BA}\)=> AB2 = BC.BD hay a2 = (a+2).BD  (*)

Ta thấy: ^BAC = ^B + 2.^C; ^BAC = ^A1 + ^A2 = ^C + ^A2 => ^B + 2.^C = ^C + A2 <=> ^B + ^C = ^A2  (1)

Do ^D1 là góc ngoài \(\Delta\)BAD nên ^D1 = ^A1 + ^B = ^B + ^C (Vì ^C = ^A1) (2)

Từ (1) và (2) => ^D1 = ^A2 => \(\Delta\)ACD cân tại C => AC= CD = a+1 => BD = BC - CD = BC - AC = a+2 - a - 1 = 1

Thay BD = 1 vào (*) ta có: 

\(a^2=\left(a+2\right).1\Leftrightarrow a^2-a-2=0\Leftrightarrow a^2+a-2a-2=0\)

\(\Leftrightarrow a\left(a+1\right)-2\left(a+1\right)=0\Leftrightarrow\left(a+1\right)\left(a-2\right)=0\Leftrightarrow\orbr{\begin{cases}a=-1\\a=2\end{cases}}\)

=> a = 2. (Loại TH a = -1 vì a thuộc N*) => a+1 = 3; a+2 = 4

Hay AB = 2; AC = 3; BC = 4

+) Xét trường hợp AC < AB < BC. Đặt AC = a; AB = a+1; BC = a+2

Chứng ming tương tự TH 1; ta có: AB2 = BC.BD; BD = BC - CD = BC - AC = a+2 - a = 2 

Hay \(\left(a+1\right)^2=2\left(a+2\right)\)

\(\Leftrightarrow a^2+2a+1=2a+4\Leftrightarrow a^2=3\Leftrightarrow a=\pm\sqrt{3}\)(loại vì a thuộc N*)

Vậy độ dài 3 cạnh trong \(\Delta\)ABC t/m đề là AB = 2; AC = 3; BC = 4.