Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Tam giác ABC có BE là tia phân giác của \(\widehat{ABC}\left(gt\right)\Rightarrow\frac{BA}{BC}=\frac{EA}{EC}\)
\(\Rightarrow\frac{EA}{EC}=\frac{4}{5}\Rightarrow\frac{EA}{4}=\frac{EC}{5}=\frac{EA+EC}{4+5}=\frac{AC}{9}=\frac{6}{9}=\frac{2}{3}\)
\(\Rightarrow EA=\frac{8}{3}\left(cm\right),EC=\frac{10}{3}\left(cm\right)\)
Ta có: \(\frac{AB}{AE}=\frac{4}{\frac{8}{3}}=\frac{3}{2}\)
\(\frac{AC}{AB}=\frac{6}{4}=\frac{3}{2}\Rightarrow\frac{AB}{AE}=\frac{AC}{AB}\)
\(\Delta ABC\infty\Delta AEB\left(c.g.c\right)\Rightarrow\frac{AC}{AB}=\frac{BC}{EB}\Rightarrow\frac{6}{4}=\frac{5}{EB}\Rightarrow EB=\frac{10}{3}\left(cm\right)\)
b, \(\Delta ABC\infty\Delta AEB\left(cmt\right)\Rightarrow\widehat{ACB}=\widehat{ABE}\)
Mà BE là tia p/g của \(\widehat{ABC}\left(gt\right)\Rightarrow\widehat{ABC}=2\widehat{ABE}\Rightarrow\widehat{ABC}=2\widehat{ACB}\)
c, \(\Delta BCF\) cân tại B (vì BC = BF = 5 cm) \(\Rightarrow\widehat{F}=\widehat{BCF}\)
Do đó: \(\widehat{ABE}=\frac{1}{2}\widehat{ABC}=\frac{1}{2}\left(\widehat{BCF}+\widehat{F}\right)=\widehat{F}\)
\(\Rightarrow BE//FC\Rightarrow\frac{BE}{FC}=\frac{AB}{AF}\Rightarrow\frac{\frac{10}{3}}{FC}=\frac{4}{9}\Rightarrow FC=7,5\left(cm\right)\)
\(BD=AB+AD=4+5=9\left(cm\right)\)
\(\Delta ABC\) và \(\Delta CBD\) có:
\(\frac{AB}{BC}=\frac{BC}{BD}\left(=\frac{2}{3}\right)\)
Góc B chung
\(\Rightarrow\Delta ABC\infty\Delta CBD\left(c.g.c\right)\Rightarrow\hept{\begin{cases}\widehat{ACB}=\widehat{D}\\\frac{AB}{CB}=\frac{AC}{CD}\left(1\right)\end{cases}}\)
b, Từ (1) thay số vào: \(\frac{4}{6}=\frac{5}{CD}\Rightarrow CD=7,5\left(cm\right)\)
c, \(\widehat{BAC}=\widehat{D}+\widehat{ACD}=2\widehat{D}=2\widehat{ACB}\)