Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABC có: MN//BC
=>\(\dfrac{AM}{AB}=\dfrac{MN}{BC}< =>\dfrac{1}{2}=\dfrac{3}{BC}=>BC=6cm\)
Theo định lí Ta-let, ta có: MN//BC \(\Rightarrow\dfrac{AM}{AB}=\dfrac{AN}{AC}=\dfrac{MN}{BC}=\dfrac{1}{2}\Rightarrow BC=2MN=2.3=6cm\)
a) Xét \(\Delta ABC\) có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\left(=\dfrac{1}{2}\right)\)
\(\Rightarrow\) MN//BC (định lí Ta-lét đảo)
b) Xét \(\Delta AIB\) có MK // BI ( vì MN // BC)
\(\Rightarrow\dfrac{AM}{AB}=\dfrac{MK}{BI}\) ( hệ quả của định lí Ta-lét)
C/m tương tự, ta có: \(\dfrac{AN}{AC}=\dfrac{KN}{IC}\)
Mà \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\left(=\dfrac{1}{2}\right)\)
\(\Rightarrow\dfrac{MK}{BI}=\dfrac{KN}{IC}\)
Mà \(BI=IC\Rightarrow MK=KN\)
\(\Rightarrow\) K là trung điểm của MN
\(\)
Xét ΔABC có
M∈AB(gt)
N∈AC(gt)
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)(gt)(1)
Do đó: MN//BC(Định lí Ta lét đảo)
Suy ra: MK//BI và NK//CI
Xét ΔABI có
M∈AB(gt)
K∈AI(gt)
MK//BI(Gt)
Do đó: \(\dfrac{AM}{AB}=\dfrac{MK}{BI}\)(Hệ quả của Định lí Ta lét)(2)
Xét ΔACI có
K∈AI(gt)
N∈AC(gt)
KN//IC(cmt)
Do đó: \(\dfrac{AN}{AC}=\dfrac{KN}{IC}\)(Hệ quả của Định lí Ta lét)(3)
Từ (1), (2) và (3) suy ra \(\dfrac{MK}{BI}=\dfrac{NK}{CI}\)
mà BI=CI(I là trung điểm của BC)
nên MK=NK(đpcm)
a: XétΔAHB vuông tại H có HM là đường cao
nên BM*BA=BH^2; AM*AB=AH^2; HM*AB=HA*HB
Xét ΔAHC vuông tại H có HN là đường cao
nên AN*AC=AH^2; CN*CA=CH^2; HA*HC=HN*CA
CN*BM*BC
=BH^2/BA*CH^2/CA*BC
\(=\dfrac{\left(BH\cdot CH\right)^2}{BA\cdot CA}\cdot BC\)
=AH^4/AH=AH^3
AM*AB=AH^2
AN*AC=AH^2
=>AM*AB=AN*AC(Cái này mới đúng nè bạn, còn cái AM*AC=AN*AB là sai đề rồi á)
b: AM*AN
=AH^2/AB*AH^2/AC
=AH^4/AB*AC
\(=\dfrac{AH^4}{AH\cdot BC}=\dfrac{AH^3}{BC}\)
c: Sửa đề: AB^3/AC^3=BM/CN
\(\dfrac{BM}{CN}=\dfrac{BH^2}{AB}:\dfrac{CH^2}{AC}\)
\(=\dfrac{BH^2}{AB}\cdot\dfrac{AC}{CH^2}=\dfrac{BH^2}{CH^2}\cdot\dfrac{AC}{AB}=\dfrac{AB^4}{AC^4}\cdot\dfrac{AC}{AB}=\dfrac{AB^3}{AC^3}\)
Xét \(\Delta ABC\) có:
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
=> \(MN//BC\) ( Định lý Ta - lét đảo)
=>\(\left\{{}\begin{matrix}MK//BI\\NK//CI\end{matrix}\right.\)
Xét \(\Delta ABI\) có \(MK//BI\)
=> \(\dfrac{MK}{BI}=\dfrac{AK}{AI}\) ( Hệ quả của định lý Ta - lét) (1)
Xét \(\Delta ACI\) có \(NK//CI\)
=> \(\dfrac{NK}{CI}=\dfrac{AK}{AI}\) ( Hệ quả của định lý Ta - lét) (2)
Từ (1), (2)
=>\(\dfrac{MK}{BI}=\dfrac{NK}{CI}\)
Mà \(BI=CI\)
=> \(MK=NK\) (đpcm)
Chọn B
B