K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2016

A B C D

góc B > 90 độ

\(\Rightarrow\)cạnh huyền AD lớn nhất => AB < AD  (1)

góc ADC > góc B = 90 độ  (góc ngoài tại D của tam giác ABD)

=> góc ADC > 90 độ => cạnh huyền AC lớn nhất => AD < AC  (2)

Từ (1) và (2), => AB < AD <AC (đpcm)

10 tháng 3 2016

 a) Theo định lí pitago trong 

Trong tam giác vuông ABC có : 

BC= AB+ AC

BC2 =5+ 12=15+144=169

suy ra : BC = /169 =13 (cm )

b)

Trong tam giác vuông ABC có:

 = 90 độ (tam giác ABC vuông tại A)

GB = GC = 45 độ ( tính chất của tam giác vuông)

suy ra : Â >GB = GC 

c)

Xét tam giác AHN và tam giác CIN có :

GN1 = GN2 ( đối đỉnh )

NH = NI ( gt)

NA = NC  ( N là trung điểm của AC )

Suy ra :tam giác AHN = tam giác CIN ( c-g-c)

d)

Suy ra :GH1 = GC1( Tam giác AHN = Tam giác CIN)

Suy ra :GH2 = GC2 = 45 độ

Xét tam giác AHE và tam giác ICE có :

GH = GC ( C/M trên )

AH = CI ( Tam giác AHN = tam giác CIN ) 

HE = CE ( E là trung điểm của HC )

suy ra : tam giác AHE = tam giác ICE ( c-g-c)

suy ra :

AE = IE ( 2 cạnh tương ứng )

Suy ra :

tam giác AEI cân tại I

Mình làm vậy ko biết có đúng ko nữa ? nhưng mình đoán là zậy đấy

A B C 12 5 H N

từ từ đợi tí!

Xét ΔABD có \(\widehat{B}>90^0\)

nen AD là cạnh lớn nhất

=>AB<AD(1)

XétΔADC có \(\widehat{ADC}>90^0\)

nên AC là cạnh lớn nhất

=>AD<AC(2)

Từ (1) và (2) suy ra AB<AD<AC

17 tháng 2 2016

trong tam giác ABD có góc B > 90 độ => góc B là góc lớn nhất và góc ADB <90 độ

=> AD> AB ( quan hệ góc cạnh trong tam giác)  hay AB<AD (1)         

có góc ADB + góc ADC = 180 độ mà góc ADB < 90 độ  

=> góc ADC > 90 độ  

trong tam giác ADC có góc ADC > góc ACD => AC> AD hay AD<AC (2) 

từ (1) và (2) => AB< AD< AC

29 tháng 4 2017

B C A D

Xét tam giác ABD có góc ABD>90o =>góc ABD là góc lớn nhất trong tam giác=>cạnh AD là cạnh lớn nhất=>AD>AB(1)

Xét tam giác ADC có góc ADC=góc ABD + góc BAD

Do ABD>900=>góc ADC>900

=>góc ADC là góc lớn nhất trong tam giác ADC=>cạnh AC là cạnh lớn nhất trong tam giác ADC=>AC>AD(2)

Từ (1) và (2)=> AB<AD<AC