K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
1 tháng 11 2019

Lời giải:

Kẻ đường cao $AH$

Ta thấy:

$\frac{BH}{AB}=\cos B\Rightarrow BH=AB\cos B=6\cos 60^0=3$ (cm)

$\frac{AH}{AB}=\sin B\Rightarrow AH=AB\sin B=6\sin 60^0=3\sqrt{3}$ (cm)

$CH=BC-BH=4-3=1$ (cm)

Áp dụng định lý Pitago cho tam giác vuông $AHC$:

$AC=\sqrt{AH^2+CH^2}=\sqrt{(3\sqrt{3})^2+1^2}=2\sqrt{7}$ (cm)

AH
Akai Haruma
Giáo viên
1 tháng 11 2019

Hình vẽ:

Ôn tập Hệ thức lượng trong tam giác vuông

1 tháng 11 2019

A B C 6 4 H  

Kẻ đường cao AH

Ta thấy :

\(\frac{BH}{AB}=cosB\Rightarrow BH=ABcosB=6cos60^o=3\left(cm\right)\)

\(\frac{AH}{AB}=sinB\Rightarrow AH=ABsinB=6sin60^o=3\sqrt{3}\left(cm\right)\)

\(CH=BC-BH=4-3=1\left(cm\right)\)

Áp dụng định lí Pitago cho tam giác vuông AHC

\(AC=\sqrt{AH^2+CH^2}=\sqrt{\left(3\sqrt{3}^2\right)+1^2}=2\sqrt{7}\left(cm\right)\)

Chúc bạn học tốt !!!

P
1 tháng 11 2019

ac đề cho r kìa :v

NV
18 tháng 7 2021

Kẻ đường cao AD, đặt \(AB=x>0\) ; \(BD=y>0\)

\(\Rightarrow AC=12-x\) ; \(CD=8-y\)

Trong tam giác vuông ABD:

\(BD=AB.cosB\Leftrightarrow y=x.cos60^0=\dfrac{x}{2}\) \(\Rightarrow CD=8-\dfrac{x}{2}\) 

Theo định lý Pitago:

\(\left\{{}\begin{matrix}AD^2=AB^2-BD^2\\AD^2=AC^2-CD^2\end{matrix}\right.\) \(\Rightarrow AB^2-BD^2=AC^2-CD^2\)

\(\Leftrightarrow x^2-\left(\dfrac{x}{2}\right)^2=\left(12-x\right)^2-\left(8-\dfrac{x}{2}\right)^2\)

\(\Leftrightarrow16x-80=0\)

\(\Rightarrow x=5\)

Vậy \(\left\{{}\begin{matrix}AB=5\\AC=7\end{matrix}\right.\)

NV
18 tháng 7 2021

undefined

23 tháng 8 2023

Để tính diện tích tam giác ABC, chúng ta có thể sử dụng công thức diện tích tam giác:

Diện tích tam giác ABC = 1/2 * AB * AC * sin(A)

Với góc A = 50°50' và AB = 4cm, AC = 6cm, chúng ta có thể tính được diện tích tam giác ABC bằng cách thay các giá trị vào công thức trên.

\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\cdot sinA=\dfrac{1}{2}\cdot4\cdot6\cdot sin50\simeq9,19\left(cm^2\right)\)

Gọi O là tâm đường tròn ngoại tiếp ΔABC

Gọi H là giao của AO với BC

AB=AC

OB=OC

Do đó: AO là trung trực của BC

=>AH là trung trực của BC

=>H là trung điểm của BC

HB=HC=4/2=2cm

Kẻ giao của AO với (O) là D

=>AD là đường kính của (O)

Xét (O) có

ΔABD nội tiếp

ADlà đường kính

Do đó: ΔBAD vuông tại B

ΔAHB vuông tại H

=>AH^2+HB^2=AB^2

=>\(AH^2=6^2-2^2=32\)

=>\(AH=4\sqrt{2}\left(cm\right)\)

Xét ΔBAD vuông tại B có BH là đường cao

nên AB^2=AH*AD

=>\(AD=\dfrac{6^2}{4\sqrt{2}}=\dfrac{9}{\sqrt{2}}\left(cm\right)\)

=>\(R=\dfrac{AD}{2}=\dfrac{9}{2\sqrt{2}}\left(cm\right)\)

a: ΔBAC vuông tại B có góc A=45 độ

nên ΔBAC vuông cân tại B

=>BA=BC=2a

AC=căn AB^2+BC^2=2a*căn 2

b: BH=BA*BC/AC=4a^2/2*a*căn 2=a*căn 2

c: S ABC=1/2*2a*2a=2a^2

d: C=2a+2a+2a*căn 2=4a+2a*căn 2

23 tháng 8 2023

Ta có:

\(AB^2=4^2=16\)

\(AC^2=6^2=36\)

\(BC^2=\left(2\sqrt{13}\right)^2=52\)

\(\Rightarrow AB^2+AC^2=BC^2\left(=52\right)\)

\(\Rightarrow\Delta ABC\) vuông tại A (theo định lý Pytago đảo)

\(\Rightarrow sinB=\dfrac{AC}{BC}\)

\(sinC=\dfrac{AB}{BC}\)

\(\Rightarrow\dfrac{sinB}{sinC}=\dfrac{\dfrac{AC}{BC}}{\dfrac{AB}{BC}}=\dfrac{AC}{AB}\)

\(\Rightarrow AB.sinB=AC.sinC\)

Bài 2: 

b: \(AH\cdot\left(\cot\widehat{B}+\cot\widehat{C}\right)\)

\(=AH\cdot\left(\dfrac{BH}{AH}+\dfrac{CH}{AH}\right)\)

\(=AH\cdot\dfrac{BC}{AH}=BC\)

29 tháng 9 2016

bài này làm sao mà giải đc

bạn vẽ chính xác hình ruj đo đi