Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
Suy ra: \(\widehat{BAD}=\widehat{BED}=90^0\)
hay DE⊥BE
b: Ta có: ΔBAD=ΔBED
nên DA=DE
hay D nằm trên đường trung trực của AE(1)
Ta có: BA=BE
nên B nằm trên đường trung trực của AE(2)
Từ (1) và (2) suy ra BD là đường trung trực của AE
a, Theo định lý Py-ta-go ta có:
AB2 + AC2 = BC2
62 +82 = BC2
Suy ra : BC2 = 82 + 62 =100
BC = 10 cm
b, Xét tam giác DAB và tam giác DEB ta có :
- B1=B2 (gt)
- BD là cạnh chung
- BE=BA (gt)
Suy ra tam giác DAB= DEB ( C.G.C)
Vậy : AD=AE (hai góc tương ứng )
Góc DAB= Góc DEB = 90 độ (hai góc tương ưng)
Hay DE vuông góc với BC
a/xét tg ABC vuông tại A :\(BC^2=AB^2+AC^2\\ BC^2=6^2+8^2\\ BC^2=36+64=100\\ BC=\sqrt{100}\\ BC=10\)
b/ xét tg ABD và tg BED :
BA = BE (gt)
BD cạnh chung
góc ABD = góc EBD (gt)
vậy tg ABD = tg EBD (c.g.c)
=> AD = ED (ctứ)
DE vg BE '' ko bít làm '' tớ hc ko giỏi ''
a: Xét ΔADE có
AB/BD=AC/CE
nên DE//BC
b: Xét ΔDBM vuông tại M và ΔECN vuông tại N có
DB=EC
\(\widehat{DBM}=\widehat{ECN}\)
Do đó: ΔDBM=ΔECN
Suy ra: BM=CN
c: Xét ΔABM và ΔACN có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
DO đó: ΔABM=ΔACN
Suy ra: AM=AN
hay ΔAMN cân tại A
Gọi I là giao điểm của phân giác góc B và C
Xét tam giác HAC vuông tại H và tam giác ABC vuông tại A có góc C chung => góc HAC = góc ABC
Ta có: góc ADC = góc DAB + góc DBA = góc DAH + góc HAC ( vì góc DAB = DAH ; góc HAC=DBA)
=>góc ADC= góc DAH + góc HAC = góc DAC
=> tam giác CAD cân tại C => CA=CD
tam giác CID = tam giác CIA (c.g.c) => IA = ID (1)
CM tương tự, ta có IA = IE (2)
Từ (1) và (2) suy ra IA = IE = ID => I là giao điểm 3 đường trung trực của tam giác ADE
=> đpcm
Dễ thôi mà, góc B và góc E cùng nhìn chung 1 cung là cung AD => góc B = góc E. Mà góc ABD = 90 độ => góc AED cũng = 90 độ
a: Xét tứ giác ABEC có
M là trung điểm của AE
M là trung điểm của BC
Do đó: ABEC là hình bình hành
mà \(\widehat{CAB}=90^0\)
nên ABEC là hình chữ nhật
Suy ra: CD⊥AC
b: Xét ΔCAE có
CH là đường cao
CH là đường trung tuyến
Do đó: ΔCAE cân tại C
c: Ta có: ΔCAE cân tại C
nên CA=CE
mà CA=BD
nên BD=CE
d: Xét ΔMAE có
MH là đường cao
MH là đường trung tuyến
Do đó: ΔMAE cân tại M
Xét ΔDEA có
EM là đường trung tuyến
EM=DA/2
Do đó: ΔDEA vuông tại E
hay AE⊥ED
a) Có góc DBH = góc AHB ( cùng = 90 º do cùng vuông góc BC ) mà 2 góc này ở vị trí so le trong nên BD song song AH.
Lại có BD = AH ( gt ) nên AHBD là hbh , vậy AB song song DH ( theo tính chất hbh )
b) Xét tam giác ABH có góc BAH = 35 º ( gt ) , góc AHB = 90 º do AH vuông góc BC.
Vậy góc ABC = 180º-90º-35º = 55º .
Do đó góc ACB = 180º - góc ABC - góc BAC
= 180º-90º-55º = 35º