K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, Xét tam giác vuông ABH và tam giác vuông MBH có

góc MBH = góc ABH (do BH là phân giác góc B)

HB chung

=> Tam giác vuông ABH = tam giác vuông MBH ( ch - gn )

b, Từ câu a, sẽ có HM = HA ( cạnh tương ứng)

=> H thuộc trung trực của AM(1)

Ta còn có BM = BA ( cạnh tương ứng )

=> B thuộc trung trực của AM (2)

Từ (1) và (2) suy ra BH là trung trực của AM

c, Xét tam giác BCN

có NM vuông góc với BC => NM là đường cao ứng với cạnh BC

có CA vuông góc với BN => CA là đường cao ứng với cạnh BN

mà chúng giao nhau ở H nên H là trực tâm 

nên BH là đường cao ứng với cạnh CN

=> BH vuông góc với CN mà BH còn vuông góc với AM (BH là trung trực của AM)

=> CN song song với AM

d, Từ câu trên ta đã chứng minh BH vuông góc vói CN 

26 tháng 4 2021

mình xin hình ạ

 

26 tháng 4 2021

a)xét tam giác AHB và tam giác MBH có:BH chung,góc BAH =góc BMH=90*,ABH=MBH=> hai tam giác = nhau (ch-gn)

b)tam giác AHB và tam giác MBH=>BA=BM=>tam giác BAM cân tại B => tam giác BAM cân=>BH là pg và cũng là đường cao => BH là đường trung trực của đoạn thẳng AM    

c) tam giác BCN có NM,AC là đường cao mà NM cắt AC tại H => H là trung tâm=>BH vuông góc NC,BH vuông góc với AM =>AM//CN 

MÌNH KO BIẾT LÀM d NHÉ

a: Xét ΔBAH vuông tại A và ΔBMH vuông tại M có

BH chung

góc ABH=góc MBH

=>ΔBAH=ΔBMH

b: BA=BM

HA=HM

=>BH là trung trực của AM

=>BH vuông góc AM

c: Xét ΔBMN vuông tại M và ΔBAC vuông tại A có

BM=BA

góc MBN chung

=>ΔMBN=ΔABC

=>BN=BC

Xét ΔBNC có BA/BN=BM/BC

nên AM//NC

2 tháng 5 2022

a) .

Xét tam giác ABH và tam giác MBH có :

AB = BH(BE là tia phân giác)

góc ABH = góc HBM(BE là tia phân giác)

BH cạnh chung

đo đó : tam giác ABH = tam giác MBH (c.g c) (1)

b)

 Từ (1) suy ra:

tam giác ABM cân tại B mà BH là phân giác

=>BE là trung trực của đoạn thẳng AM

24 tháng 4 2017

a) xét tam giác ABH và taam giác MBH có :

AB=BH(BE là tia phân giác)

ABH=HBM(BE là tia phân giác)

BH cạnh chung

=>tam giác ABH =tam giácHBE (c.g c)

b)=>tam giác ABM cân tại B mà BH là phân giác 

=>BE là trung trực

=>AHB=MHB=90 độ

c)vì AMC và góc MNC là cặp góc so le trong

=>AM//NC

d)Vì AM//NC(theo c)

mà BH vuông góc với AM

=>BH vông góc với NC (T/C từ vuông góc đến song song)

a) xét tam giác ABH và taam giác MBH có :
AB=BH(BE là tia phân giác)
ABH=HBM(BE là tia phân giác)
BH cạnh chung
=>tam giác ABH =tam giácHBE (c.g c)
b)=>tam giác ABM cân tại B mà BH là phân giác 
=>BE là trung trực
=>AHB=MHB=90 độ
c)vì AMC và góc MNC là cặp góc so le trong
=>AM//NC
d)Vì AM//NC(theo c)
mà BH vuông góc với AM
=>BH vông góc với NC (T/C từ vuông góc đến song song)

a: Xét ΔBAH vuông tại A và ΔBMH vuông tại M có

BH chung

góc ABH=góc MBH

=>ΔBAH=ΔBMH

b: Xét ΔHAN vuông tại A và ΔHMC vuông tại M có

HA=HM

góc AHN=góc MHC

=>ΔHAN=ΔHMC

c: BN=BC

HN=HC

=>BH là trung trực của NC

=>BH vuông góc NC

c: BH là trung trực của NC

K là trung điểm của NC

=>B,H,K thẳng hàng