Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\widehat{B}=180^o-60^o-45^o=75^o\)
Theo định lý sin ta có:
\(\dfrac{AB}{sinC}=\dfrac{AC}{sinB}\)
\(\Rightarrow AC=\dfrac{AB\cdot sinB}{sinC}=\dfrac{5\cdot sin75^o}{sin45^o}=\dfrac{5+5\sqrt{3}}{2}\)
Mà: \(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\cdot sinA\)
\(\Rightarrow S_{ABC}=\dfrac{1}{2}\cdot5\cdot\dfrac{5+5\sqrt{3}}{2}\cdot sin60^o=\dfrac{75+25\sqrt{3}}{8}\left(dvdt\right)\)
Áp dụng định lý hàm cosin:
\(b=\sqrt{a^2+c^2-2ac.cosB}=7\)
Diện tích:
\(S_{ABC}=\dfrac{1}{2}ac.sinB=10\sqrt{3}\)
a: Xét ΔABC có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
=>\(\widehat{C}=180^0-60^0-45^0=75^0\)
Xét ΔABC có \(\dfrac{BC}{sinA}=\dfrac{AC}{sinB}=\dfrac{AB}{sinC}\)
=>\(\dfrac{BC}{sin60}=\dfrac{4}{sin45}=\dfrac{AB}{sin75}\)
=>\(BC=2\sqrt{6};AB=2+2\sqrt{3}\)
b: Xét ΔABC có
\(\dfrac{BC}{sinA}=2R\)
=>\(2R=6:sin60=4\sqrt{3}\)
=>\(R=2\sqrt{3}\)
Tham khảo:
a) Áp dụng hệ quả của định lí cosin, ta có:
\(\begin{array}{l}\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}};\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}}\\ \Rightarrow \left\{ \begin{array}{l}\cos A = \frac{{{{10}^2} + {{13}^2} - {8^2}}}{{2.10.13}} = \frac{{41}}{{52}} > 0;\\\cos B = \frac{{{8^2} + {{13}^2} - {{10}^2}}}{{2.8.13}} = \frac{{133}}{{208}} > 0\\\cos C = \frac{{{8^2} + {{10}^2} - {{13}^2}}}{{2.8.10}} = - \frac{1}{{32}} < 0\end{array} \right.\end{array}\)
\( \Rightarrow \widehat C \approx 91,{79^ \circ } > {90^ \circ }\), tam giác ABC có góc C tù.
b)
+) Áp dụng định lí cosin trong tam giác ACM, ta có:
\(\begin{array}{l}A{M^2} = A{C^2} + C{M^2} - 2.AC.CM.\cos C\\ \Leftrightarrow A{M^2} = {8^2} + {5^2} - 2.8.5.\left( { - \frac{1}{{32}}} \right) = 91,5\\ \Rightarrow AM \approx 9,57\end{array}\)
+) Ta có: \(p = \frac{{8 + 10 + 13}}{2} = 15,5\).
Áp dụng công thức heron, ta có: \(S = \sqrt {p(p - a)(p - b)(p - c)} = \sqrt {15,5.(15,5 - 8).(15,5 - 10).(15,5 - 13)} \approx 40\)
+) Áp dụng định lí sin, ta có:
\(\frac{c}{{\sin C}} = 2R \Rightarrow R = \frac{c}{{2\sin C}} = \frac{{13}}{{2.\sin 91,{{79}^ \circ }}} \approx 6,5\)
c)
Ta có: \(\widehat {BCD} = {180^ \circ } - 91,{79^ \circ } = 88,{21^ \circ }\); \(CD = AC = 8\)
Áp dụng định lí cosin trong tam giác BCD, ta có:
\(\begin{array}{l}B{D^2} = C{D^2} + C{B^2} - 2.CD.CB.\cos \widehat {BCD}\\ \Leftrightarrow B{D^2} = {8^2} + {10^2} - 2.8.10.\cos 88,{21^ \circ } \approx 159\\ \Rightarrow BD \approx 12,6\end{array}\)
a: BC/sinA=2R
=>2R=3/sin40
=>\(R\simeq2,33\left(cm\right)\)
b: góc B=180-40-60=80 độ
\(\dfrac{AC}{sinB}=\dfrac{BC}{sinA}=\dfrac{AB}{sinC}\)
=>AC/sin80=3/sin40=AB/sin60
=>\(AC\simeq5\left(cm\right)\) và \(AB\simeq4,04\left(cm\right)\)
c: \(AM=\sqrt{\dfrac{AB^2+AC^2}{2}-\dfrac{BC^2}{4}}=\sqrt{\dfrac{5^2+4,04^2}{2}-\dfrac{3^2}{4}}\simeq4,29\left(cm\right)\)
\(cosA=\dfrac{AB^2+AC^2-BC^2}{2AB.AC}=-\dfrac{1}{32}\)
\(\Rightarrow A\approx92^0\)
\(p=\dfrac{AB+AC+BC}{2}=\dfrac{31}{2}\)
\(S_{ABC}=\sqrt{p\left(p-AB\right)\left(p-AC\right)\left(p-BC\right)}\simeq40\)
\(r=\dfrac{S}{p}=\dfrac{80}{31}\)
a, Kẻ \(CH\perp AB\Rightarrow CH=AC.sin60^o=\dfrac{8.\sqrt{3}}{2}=4\sqrt{3}\)
\(\Rightarrow BC=\dfrac{CH}{sin45^o}=\dfrac{4\sqrt{3}}{\dfrac{\sqrt{2}}{2}}=4\sqrt{6}\)
\(AH=AC.cosA=8.cos60^o=4\)
\(BH=\dfrac{CH}{tan45^o}=4\sqrt{3}\)
\(\Rightarrow AB=AH+BH=4\sqrt{3}+4\)
\(\widehat{C}=180^o-\widehat{A}-\widehat{B}=180^o-60^o-45^o=75^o\)
b, \(S_{ABC}=\dfrac{1}{2}.AC.AB.sinA=\dfrac{1}{2}.8.\left(4+4\sqrt{3}\right).sin60^o=24+8\sqrt{3}\)
a) \(\widehat{C}\)= 180-(60+45)=75o