K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
3 tháng 9 2021
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
\(\widehat{BAE}\) chung
Do đó: ΔABE\(\sim\)ΔACF
Suy ra: \(\dfrac{AB}{AC}=\dfrac{AE}{AF}\)
hay \(AF\cdot AB=AE\cdot AC\)
2 tháng 10 2021
a: Xét ΔABC vuông tại A có
\(AB^2+AC^2=BC^2\)
hay AC=12(cm)
Xét ΔBAC vuông tại A có
\(\sin\widehat{ACB}=\dfrac{AB}{BC}=\dfrac{5}{13}\)
\(\cos\widehat{ACB}=\dfrac{AC}{BC}=\dfrac{12}{13}\)
\(\tan\widehat{ACB}=\dfrac{5}{12}\)
\(\cot\widehat{ACB}=\dfrac{12}{5}\)
ABCOEFcba
Đặt AB=c;AC=b;BC=a
TH1:2BO.CO=BE.CF
Ta có △ABC có đường phân giác BE
\(\Leftrightarrow\dfrac{CE}{AE}=\dfrac{BC}{AB}\Leftrightarrow\dfrac{CE}{AE+CE}=\dfrac{BC}{AB+BC}\Leftrightarrow\dfrac{CE}{AC}=\dfrac{BC}{AB+BC}\Leftrightarrow CE=\dfrac{AC.BC}{AB+BC}=\dfrac{ab}{a+c}\)
Tương tự \(BF=\dfrac{ac}{a+b}\)
Ta có △BEC có đường phân giác CO
\(\Leftrightarrow\dfrac{BO}{OE}=\dfrac{BC}{EC}\Leftrightarrow\dfrac{BO}{OE+BO}=\dfrac{BC}{EC+BC}\Leftrightarrow\dfrac{BO}{BE}=\dfrac{a}{a+\dfrac{ab}{a+c}}\Leftrightarrow\dfrac{BO}{BE}=\dfrac{b+c}{a+b+c}\)
Tương tự \(\dfrac{CO}{FC}=\dfrac{a+c}{a+b+c}\)
Ta có \(2BO.CO=BE.CF\Leftrightarrow\dfrac{BO}{BE}.\dfrac{CO}{CF}=\dfrac{1}{2}\Leftrightarrow\dfrac{b+c}{a+b+c}.\dfrac{a+c}{a+b+c}=\dfrac{1}{2}\Leftrightarrow\dfrac{\left(b+c\right)\left(a+c\right)}{\left(a+b+c\right)^2}=\dfrac{1}{2}\Leftrightarrow2\left(ab+bc+ac+c^2\right)=a^2+b^2+c^2+2ab+2ac+2bc\Leftrightarrow c^2=a^2+b^2\)⇔△ABC vuông tại A
chứng minh ngược lại với TH1 trong TH2 là △ABC vuông tại A
Vậy △ABC vuông tại A⇔2BO.CO=BE.CF