K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc ADH=góc AEH=góc DAE=90 độ

=>ADHE là hình chữ nhật

b: ΔAHB vuông tại H có HD là đường cao

nên AD*AB=AH^2

ΔAHC vuông tại H có HE là đường cao

nên AE*AC=AH^2=AD*AB

=>AE/AB=AD/AC

=>ΔAED đồng dạng với ΔABC

c: ΔAED đồng dạng với ΔABC

=>\(\dfrac{S_{AED}}{S_{ABC}}=\left(\dfrac{ED}{BC}\right)^2=\dfrac{4}{25}\)

=>\(S_{AED}=\dfrac{4}{25}\cdot80=\dfrac{320}{25}=12.8\left(cm^2\right)\)

16 tháng 11 2021

\(\widehat{BHD}=\widehat{HAB}\)

\(\widehat{HAB}=\widehat{ADE}\)

Do đó: \(\widehat{ADE}=\widehat{BHD}\)

a: Xét ΔHCA vuông tại H và ΔACB vuông tại A có

góc HCA chung

Do đó:ΔHCA\(\sim\)ΔACB

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=AB^2\)

c: Xét ΔAHB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\)

XétΔAHC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

7 tháng 3 2017

Gọi I, K lần lượt là hình chiếu của H lên AB và AC.

⇒ H I A ^ = H K A ^ = 90 ∘

Xét tứ giác AIHK có: I A K ^ = H I A ^ = H K A ^ = 90 ∘

=> Tứ giác AIHK là hình chữ nhật (dhnb)

+) Xét ΔAIK và ΔIAH ta có:

AI chung

AK = IH (theo tính chất của hình chữ nhật)

AH = IK (theo tính chất của hình chữ nhật)

=> ΔAIK = ΔIAH (c - c - c) (1)

Xét 2 tam giác vuông ΔIAH và ΔHAB có: A chung

=> ΔIAH ~ ΔHAB (g - g) (2)

Xét 2 tam giác vuông ΔHAB và ΔACB có: B chung

=> ΔHAB ~ ΔACB (g - g) (3)

Từ (1), (2) và (3) ta có: ΔAIK ~ ΔACB

Đáp án: A

28 tháng 1 2022

a, Xét tứ giác ADHE có : 

^A = ^ADH =  ^HEA = 900

Vậy tứ giác ADHE là hcn 

Vậy AH = DE ( 2 đường chéo bằng nhau ) 

b, Xét tam giác AEH và tam giác AHC có : 

^AEH = ^AHC = 900

^A _ chung 

Vậy tam giác AEH ~ tam giác AHC ( g.g ) 

=> AH/AC = AE/AH => AH^2 = AE.AC (1) 

tương tự với tam giác ADH ~ tam giác AHB (g.g)

=> AD/AH = AH/AB => AH^2=AD.AB (2) 

Từ (1) ; (2) suy ra AE.AC = AD.AB 

c, Xét tam giác ABH và tam giác CAH 

^AHB = ^CHA = 900

^ABH = ^CAH ( cùng phụ ^BAH )

Vậy tam giác ABH ~ tam giác CAH (g.g)

=> AH/CH = BH/AH => AH^2 = BH.CH 

=> CH = AH^2/BH = 144/9 = 16

=> BC = BH + CH = 25 cm 

Diện tích tam giác ABC là : SABC = 1/2 . AH . BC 

= 1/2 . 12 . 25 = 150 cm2

23 tháng 1 2018

Chọn C

a: BC=35cm

Xét ΔABC có AD là phân giác

nên BD/AB=CD/AC

=>BD/3=CD/4

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{35}{7}=5\)

Do đó:BD=15cm; CD=20cm

b: Xét ΔABC có DE//AB

nên DE/AB=CD/BC

=>DE/21=20/35=4/7

=>DE=12cm

Xét ΔABC cso DE//BC

nên CE/CA=ED/AB

=>CE/28=12/21=4/7

=>CE=12cm

7 tháng 3 2022

e tự vẽ hình nha

a) vì tg ABC vg tại A(gt)

\(\Rightarrow AB^2+AC^2=BC^2\left(pytago\right)\\ \Leftrightarrow28^2+21^2=BC^2\\ \Leftrightarrow BC=35\left(cm\right)\)

có AD là pgiac(gt)

\(\Rightarrow\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{21}{28}\\ \Leftrightarrow\dfrac{BD}{21}=\dfrac{CD}{28}=\dfrac{BD+CD}{21+28}=\dfrac{BC}{49}=\dfrac{35}{49}\)

\(+\dfrac{BD}{21}=\dfrac{35}{49}\Rightarrow BD=15\left(cm\right)\\ +\dfrac{CD}{28}=\dfrac{35}{49}\Rightarrow CD=20\left(cm\right)\)

b) xét tgiac ABC và tgac EDC có:

+ góc C chung

+ góc E = góc A (=90 độ)

+ góc D = góc B ( sltrong, DE//AB vì cùng vg góc AC)

\(\Rightarrow\Delta ABC\sim\Delta EDC\left(ggg\right)\\ \Rightarrow\dfrac{CB}{CD}=\dfrac{AB}{ED}=\dfrac{AC}{EC}\)

\(\Leftrightarrow\dfrac{35}{20}=\dfrac{AB}{ED}=\dfrac{AC}{EC}\)

\(+ED=\dfrac{20.21}{35}=12\left(cm\right)\\ +EC=\dfrac{28.20}{35}=16\left(cm\right)\)

c)  ở trên câu b a làm có luôn tam giác với tỉ số r đấy e chép xuống

18 tháng 5 2021

undefined