K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: B,A,D thẳng hàng(gt)

mà AB=AD(gt)

nên A là trung điểm của BD

Ta có: B,M,C thẳng hàng(gt)

mà BM=CM(gt)

nên M là trung điểm của BC

Ta có: D,N,C thẳng hàng(gt)

mà DN=NC(gt)

nên N là trung điểm của DC

Xét ΔDBC có 

A là trung điểm của BD(cmt)

M là trung điểm của BC(cmt)

Do đó: AM là đường trung bình của ΔDBC(Định nghĩa đường trung bình của tam giác)

⇒AM//DC và \(AM=\dfrac{DC}{2}\)(Định lí 2 về đường trung bình của tam giác)

mà N∈DC và \(CN=\dfrac{DC}{2}\)(N là trung điểm của DC)

nên AM//NC và AM=NC

Xét ΔABC có AB=AC(gt)

nên ΔABC cân tại A(Định nghĩa tam giác cân)

mà AM là đường trung tuyến ứng với cạnh đáy BC(M là trung điểm của BC)

nên AM là đường cao ứng với cạnh BC(Định lí tam giác cân)

⇒AM⊥BC

\(\widehat{AMC}=90^0\)

Xét tứ giác AMCN có 

AM//CN(cmt)

AM=CN(cmt)

Do đó: AMCN là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành AMCN có \(\widehat{AMC}=90^0\)(cmt)

nên AMCN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

\(\widehat{MAN}=90^0\)

hay AM⊥AN(đpcm)

b) Xét ΔDBC có 

A là trung điểm của BD(cmt)

N là trung điểm của DC(cmt)

Do đó: AN là đường trung bình của ΔDBC(Định nghĩa đường trung bình của tam giác)

⇒AN//BC và \(AN=\dfrac{BC}{2}\)(Định lí 2 về đường trung bình của tam giác)(đpcm)

c) Ta có: A là trung điểm của BD(cmt)

nên \(AB=\dfrac{BD}{2}\)

mà AB=AC(gt)

nên \(CA=\dfrac{BD}{2}\)

Xét ΔBCD có 

CA là đường trung tuyến ứng với cạnh BD(A là trung điểm của BD)

\(CA=\dfrac{BD}{2}\)(cmt)

Do đó: ΔBCD vuông tại C(Định lí 2 về áp dụng hình chữ nhật vào tam giác vuông)

hay \(\widehat{BCD}=90^0\)(đpcm)

31 tháng 1 2019

ABC là gì hả bn ? Hình tam giác à

Bài 6: Cho ∠xAy, lấy điểm B trên tia Ax, điểm D trên tia Ay sao cho AB = AD. Trên tia Bx lấy điểm E, trên tia Dy lấy điểm C sao cho BE = DC. Chứng minh ΔABC = ΔADE.Bài 7: Cho đoạn thẳng AB có M là trung điểm. Qua M kẻ đường thẳng d vuông góc với AB. Lấy C ∈ d (C khác M). Chứng minh CM là tia phân giác của ∠ACB.Bài 8: Cho ΔABC có AB = AC, phân giác AM (M ∈ BC).Chứng minh: a) ΔABM = ΔACM. b) M là trung điểm của BC...
Đọc tiếp

Bài 6: Cho ∠xAy, lấy điểm B trên tia Ax, điểm D trên tia Ay sao cho AB = AD. Trên tia Bx lấy điểm E, trên tia Dy lấy điểm C sao cho BE = DC. Chứng minh ΔABC = ΔADE.
Bài 7: Cho đoạn thẳng AB có M là trung điểm. Qua M kẻ đường thẳng d vuông góc với AB. Lấy C ∈ d (C khác M). Chứng minh CM là tia phân giác của ∠ACB.
Bài 8: Cho ΔABC có AB = AC, phân giác AM (M ∈ BC).
Chứng minh: a) ΔABM = ΔACM. b) M là trung điểm của BC và AM ⊥ BC.
Bài 9: Cho ΔABC, trên nửa mặt phẳng bờ AC không chứa điểm B, lấy điểm D sao cho AD // BC và AD = BC. Chứng minh: a) ΔABC = ΔCDA. b) AB // CD và ΔABD = ΔCDB.
Bài 10: Cho ΔABC có ∠A = 90 độ, trên cạnh BC lấy điểm E sao cho BA = BE. Tia phân giác ∠B cắt AC ở D.
a) Chứng minh: ΔABD = ΔEBD. b) Chứng minh: DA = DE. c) Tính số đo ∠BED.
Bài 11: Cho ΔABD, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: a) ΔABM = ΔECM. b) AB = CE và  AC // BE.
(* Chú ý: Δ là tam giác, ∠ là góc, ⊥ là vuông góc, // là song song.)

0

a: Xét ΔABM và ΔACN có

AB=AC

góc ABM=góc ACN

BM=CN

Do đó: ΔABM=ΔACN

=>AM=AN

b: Xét ΔBME vuông tại E và ΔCNF vuông tại F có

BM=CN

góc M=góc N

Do đó: ΔBME=ΔCNF

c: góc OBC=góc EBM

góc OCB=góc FCN

mà góc EBM=góc FCN

nên góc OBC=góc OCB

=>OB=OC

mà AB=AC
nên AO là trung trực của BC

=>AO vuông góc với BC

ΔAMN cân tại A

mà AO là đường cao

nên AO là phân giác của góc MAN

18 tháng 1 2019

I'm lớp 4