K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABM và ΔADM có

AB=AD

BM=DM

AM chung

DO đó: ΔABM=ΔADM

b: Ta có: ΔBAD cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

c: Xét ΔABK và ΔADK có

AB=AD

\(\widehat{BAK}=\widehat{DAK}\)

AK chung

Do đó: ΔABK=ΔADK

29 tháng 11 2016

c) Δ ABK = Δ ADK (câu b) => BK = DK (2 cạnh tương ứng)

và ABK = ADK (2 góc tương ứng)

Mà ABK + KBE = 180o (kề bù)

ADK + KDC = 180o (kề bù)

nên KBE = KDC

Xét Δ KBE và Δ KDC có:

BE = CD (gt)

KBE = KDC (cmt)

BK = DK (cmt)

Do đó, Δ KBE = Δ KDC (c.g.c)

=> BKE = DKC (2 góc tương ứng)

Lại có: BKD + DKC = 180o (kề bù)

Do đó, BKE + BKD = 180o

=> EKD = 180o

hay 3 điểm E, K, D thẳng hàng (đpcm)

29 tháng 11 2016

Silver bulletsoyeon_Tiểubàng giảiPhương AnNguyễn Huy TúHoàng Lê Bảo NgọcTrương Hồng Hạnh giải giúp mk bài hình đó đingaingung

16 tháng 12 2015

a) Xét tam giác ABM và tam giác ADM, có:

BM=DM (gt)

AM chung

góc AMD = góc AMB=90 độ

=> tam giác ABM=tam giác ADM (c-g-c)

b) Vì tam giác ABM= tam giác ADM

=>AMB=AMD =90 độ ( 2 góc tương ứng)

=>AM vuông góc vs BD

c+d) ckua pt làm

=>

a: Xét ΔAMB và ΔAMD có

AM chung

MB=MD

AB=AD

Do đó: ΔAMB=ΔAMD

b: Xét ΔABK và ΔADK có

AB=AD

\(\widehat{BAK}=\widehat{DAK}\)

AK chung

Do đó: ΔABK=ΔADK

c: Xét ΔKBE và ΔKDC có

KB=KD

\(\widehat{KBE}=\widehat{KDC}\)

BE=DC

Do đó: ΔKBE=ΔKDC

Suy ra: \(\widehat{BKE}=\widehat{DKC}\)

=>\(\widehat{BKE}+\widehat{BKD}=180^0\)

hay E,K,D thẳng hàng

18 tháng 12 2019

Hình bạn tự vẽ nha!

a)

Xét tam giác ABM và tam giác ADM có:

AB = AD (gt)

BM = DM (vì M là trung điểm của BD)

AM là cạnh chung

=> Tam giác ABM = Tam giác ADM (c . c . c)

b) Xét tam giác ABD có:

AB = AD (gt)

=> Tam giác ABD cân tại A.

Có M là trung điểm của BD

=> AM là đường trung tuyến của tam giác ABD.

=> AM đồng thời là đường cao của tam giác ABD.

=> AM ⊥ BD.

c) Theo câu b) ta có tam giác ABM = tam giác ADM.

=> BAM = DAM (2 góc tương ứng)

Hay BAK = DAK.

Xét tam giác ABK và tam giác ADK có:

AB = AD (gt)

BAK = DAK (cmt)

AK là cạnh chung

=> Tam giác ABK = Tam giác ADK (c . g . c)

=> ABK = ADK (2 góc tương ứng).

d) Theo câu c) ta có tam giác ABK = tam giác ADK.

=> BK = DK (2 cạnh tương ứng).

Ta có:

ABK + KBF = 1800 (vì 2 góc kề bù)

ADK + KDC = 1800 (vì 2 góc kề bù)

Mà ABK = ADK (cmt)

=> KBF = KDC

Xét tam giác KBF và tam giác KDC có:

KB = KD (cmt)

KBF = KDC (cmt)

BF = DC (gt)

=> Tam giác KBF = Tam giác KDC (c . g . c)

=> BKF = DKC (2 góc tương ứng)

Lại có: BKD + DKC = 180 (2 góc kề bù)

Mà BKF = DKC (cmt).

=> BKD + BKF = 1800

Mà BKD + BKF = FKD.

=> FKD = 1800

=> F, K, D thẳng hàng (đpcm).

Chúc bạn học tốt!