Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔEAB và ΔDAC có
EA=DA
góc EAB=góc DAC
AB=AC
Do đó: ΔEAB=ΔDAC
=>EB=DC
b: Xét ΔEBC và ΔDCB có
EB=DC
EC=DB
BC chung
Do đó: ΔEBC=ΔDCB
c: Xét ΔAED và ΔACB có
AE/AC=AD/AB
góc EAD=góc CAB
Do đó: ΔAED đồng dạng với ΔACB
=>góc AED=góc ACB
=>ED//BC
d: ΔABC cân tại A
mà AI là trung tuyến
nên AI vuông góc BC
mà DE//BC
nên AI vuông góc DE
a) Xét \(\Delta ABE\)và \(\Delta ACD\)có :
AB = AC(gt)
\(\widehat{A}\)chung
AE = AD(gt)
=> \(\Delta ABE=\Delta ACD\left(c-g-c\right)\)
=> BE = CD(hai cạnh tương ứng)
b) Ta có : \(\Delta ABE=\Delta ACD\left(c-g-c\right)\)
=> \(\widehat{ABE}=\widehat{ACD}\)(hai góc tương ứng)
Mà \(\widehat{ABE}\)và \(\widehat{ACD}\)là hai góc so le trong
=> BE//CD
c) Vì M là trung điểm của BE nên \(ME=EB=\frac{MB}{2}\)(1)
Vì N là trung điểm của CD nên \(DN=DC=\frac{NC}{2}\)(2)
Từ (1) và (2) => \(\frac{MB}{2}=\frac{NC}{2}\)hay MB = NC
Xét \(\Delta AMB\)và \(\Delta ANC\)có :
MB = NC(cmt)
\(\widehat{A}\)chung
AB = AC(cmt câu a)
=> \(\Delta AMB=\Delta ANC\)(c-g-c)
=> AM = AN
=> A là trung điểm của MN
a) Ta có AD = AB và AE = CD. Vì AD = AB, nên tam giác ABD là tam giác cân tại A. Tương tự, tam giác AEC là tam giác cân tại A. Do đó, ta có ∠ABD = ∠BAD và ∠CAE = ∠EAC. Vì ∠BAD = ∠CAE, nên ∠ABD = ∠EAC. Vì tam giác ABD và tam giác AEC là tam giác cân tại A, nên ta có BD = AB và CE = AE. Do đó, ta có BD = AB = AE = CE. b) Ta có BD = AB và CE = AE. Vì BD = AB và CE = AE, nên ta có BD = CE. Vì BD = CE, nên tam giác BCD là tam giác cân tại B. Vì tam giác BCD là tam giác cân tại B, nên ta có ∠BCD = ∠CBD. Vì ∠BCD = ∠CBD, nên ∠BCD + ∠CBD = 180°. Do đó, ta có ∠BCD + ∠CBD = 180°. Vì ∠BCD + ∠CBD = 180°, nên tam giác BCD là tam giác đều. Vì tam giác BCD là tam giác đều, nên ta có BE = CD. c) Gọi M là trung điểm của BE và N là trung điểm của CD. Vì M là trung điểm của BE, nên ta có BM = ME. Vì N là trung điểm của CD, nên ta có CN = ND. Vì BM = ME và CN = ND, nên ta có BM + CN = ME + ND. Do đó, ta có BM + CN = ME + ND. Vì BM + CN = ME + ND, nên ta có BN = MD. Vì BN = MD, nên tam giác BMD là tam giác cân tại B. Vì tam giác BMD là tam giác cân tại B, nên ta có ∠BMD = ∠BDM. Vì ∠BMD = ∠BDM, nên ∠BMD + ∠BDM = 180°. Do đó, ta có ∠BMD + ∠BDM = 180°. Vì ∠BMD + ∠BDM = 180°, nên tam giác BMD là tam giác đều. Vì tam giác BMD là tam giác đều, nên ta có BM = MD. Vì BM = MD, nên ta có BM = MD = AM. Vậy ta có AM = AN.
a, Xét t/g ABE và t/g ADC có:
AB = AD (gt)
AE = AC (gt)
góc BAE = góc DAC (đối đỉnh)
Do đó t/g ABE = t/g ADC (c.g.c)
=> BE = CD (2 cạnh t/ứ)
b, Vì t/g ABE = t/g ADC => góc ABE = góc ADC (2 góc t/ứ)
Mà 2 góc này ở vị trí so le trong nên BE // CD
c, Vì BE = CD => \(\frac{BE}{2}=\frac{CD}{2}\) => BM = DN
Xét t/g AMB và t/g AND có:
BM = DN (cmt)
AB = AD (gt)
góc ABE = góc ADC (cmt)
Do đó t/g AMB = t/g AND (c.g.c)
=> AM = AN (2 cạnh t/ứ)
a) Xét tam giác BEA và tam giác DCA có:
+ AE = AC (gt).
+ AB = AD (gt).
+ \(\widehat{BAE}=\widehat{DAC}\) (2 góc đối đỉnh).
\(\Rightarrow\) Tam giác BEA = Tam giác DCA (c - g - c).
b) Tam giác BEA = Tam giác DCA (cmt).
\(\Rightarrow\) \(\widehat{ABE}=\widehat{ADC}\) (2 góc tương ứng).
Mà 2 góc này ở vị trí so le trong.
\(\Rightarrow\) BE // CD (dhnb).
c) Xét tam giác BEC có:
+ A là trung điểm của EC (AE = AC).
+ M là trung điểm của BE (gt).
\(\Rightarrow\) AM là đường trung bình của tam giác BEC.
\(\Rightarrow\) AM = \(\dfrac{1}{2}\) BC (Tính chất đường trung bình). \(\left(1\right)\)
Xét tam giác CDB có:
+ A là trung điểm của BD (AD = AB).
+ N là trung điểm của CD (gt).
\(\Rightarrow\) AN là đường trung bình của tam giác CDB.
\(\Rightarrow\) AN = \(\dfrac{1}{2}\) BC (Tính chất đường trung bình). \(\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\) \(\Rightarrow\) AM = AN (cùng = \(\dfrac{1}{2}\) BC).
b: Xét tứ giác BEDC có
A là trung điểm của BD
A là trung điểm của EC
Do đó: BEDC là hình bình hành
Suy ra: BE//CD