K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ADHE có góc ADH=góc AEH=góc EAD=90 độ

nên ADHE là hình chữ nhật

Suy ra: \(AD^2+AE^2=DE^2=AH^2=AD\cdot AB\)

b: \(BD\cdot AB+CE\cdot AC+2\cdot BH\cdot HC\)

\(=BH^2+CH^2+2\cdot BH\cdot CH\)

\(=\left(BH+CH\right)^2=BC^2\)

a: \(BC\cdot BD\cdot CE\)

\(=BC\cdot\dfrac{HB^2}{AB}\cdot\dfrac{CH^2}{AC}\)

\(=\dfrac{AH^4}{AH}=AH^3\)

c: Xét tứ giác ADHE có góc ADH=góc AEH=góc DAE=90 độ

nên ADHE là hình chữ nhật

Suy ra: góc AED=góc AHD=góc ABC

Ta có: ΔABC vuông tại A

mà AO là đường trung tuyến

nên OA=OC

=>ΔOAC cân tại O

=>góc OAC=góc OCA

góc DEA+góc OAC=góc ABC+góc ACB=90 độ

=>AO vuông góc với DE

10 tháng 8 2020

Cho tam giác ABC vuông tại A( AB<AC ), có đường cao AH, trung tuyến AM Gọi E và F lần lượt la hình chiếu của H lên AB và AC; I và K lần lượt là trung điểm của HB và HC. CM :

10 tháng 8 2020

đề kiểu gì thế ?

Điểm E; Điểm F; Điểm H đây vậy bạn ơi

a: Xét ΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đườg cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(HB\cdot HC=AH^2\left(3\right)\)

Từ (1), (2) và (3) suy ra \(AD\cdot AB=AE\cdot AC=HB\cdot HC\)

b: \(DA\cdot DB+EA\cdot EC\)

\(=HD^2+HE^2\)

\(=DE^2=AH^2\)

c: \(AE\cdot AB+AD\cdot AC\)

\(=\dfrac{AH^2}{AC}\cdot AB+\dfrac{AH^2}{AB}\cdot AC\)

\(=AH^2\left(\dfrac{AB}{AC}+\dfrac{AC}{AB}\right)=AH^2\cdot\dfrac{AB^2+AC^2}{AB\cdot AC}\)

\(=\dfrac{AH^2\cdot BC^2}{AH\cdot BC}=AH\cdot BC\)

\(=AB\cdot AC\)

Ta có AH=DE ( vì ADHE là hcn)

mà AH2=BH.BC

=> AH4=HB2.HC2=BD.CE.BC.BA

=> AH3=BD.CE.BC

16 tháng 10 2022

a: \(AB=\sqrt{12^2+9^2}=15\left(cm\right)\)

\(AC=\sqrt{12^2+16^2}=20\left(cm\right)\)

Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b: \(HD=\dfrac{9^2}{12}=\dfrac{81}{12}=\dfrac{27}{4}\left(cm\right)\)