K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

góc BEC=1/2*180=90 độ

góc BDC=1/2*180=90 độ

Xét ΔABC có

BD,CE là đường cao

DB cắt CE tại H

=>H là trực tâm

=>AH vuông góc BC tại F

góc MDO=góc MDH+góc ODH

=góc MHD+góc DBC

=góc HBF+góc FHB=90 độ

=>DM là tiếp tuyến của (O)

22 tháng 8 2021

Do ^AEH=^ADH=90o nên tứ giác AEHD nội tiếp đường tròn.
Suy ra đường tròn ngoại tiếp tam giác AED chính là đường tròn đường kính AH.

Do H là giao điểm hai đường cao BD và CE nên H là trực tâm. Thế thì AH  BC.
Suy ra  ^DAH=^DBC (vì cùng phụ với góc ^DCB).
Tam giác BDC vuông tại D có I là trung điểm của BC nên IB = ID = IC.
Suy ra tam giác IBD cân ở I.  Vì vậy ^IDB=^DBI.
Từ đó suy ra: ^HAD=^HBI=^BDI  hay  ^HAD=^HDI.

Gọi J là trung điểm AH. Ta có ^HAD=^JDA^JDA=^HDI.

Vậy nên ^JDI=^HDI+^JDH=^JDA+^FDH=^ADH=90o.
Suy ra DI là tiếp tuyến của đường tròn đường kính AH.
Chứng minh tương tự ta cũng có EI là tiếp tuyến của đường kính AH.

22 tháng 8 2021

Do \widehat{AEH}=\widehat{ADH}=90^oAEH=ADH=90o nên tứ giác AEHD nội tiếp đường tròn.
Suy ra đường tròn ngoại tiếp tam giác AED chính là đường tròn đường kính AH.

Do H là giao điểm hai đường cao BD và CE nên H là trực tâm. Thế thì AH \perp BC.
Suy ra  \widehat{DAH}=\widehat{DBC}DAH=DBC (vì cùng phụ với góc \widehat{DCB}DCB).
Tam giác BDC vuông tại D có I là trung điểm của BC nên IB = ID = IC.
Suy ra tam giác IBD cân ở I.  Vì vậy \widehat{IDB}=\widehat{DBI}IDB=DBI.
Từ đó suy ra: \widehat{HAD}=\widehat{HBI}=\widehat{BDI}HAD=HBI=BDI  hay  \widehat{HAD}=\widehat{HDI}HAD=HDI.

Gọi J là trung điểm AH. Ta có \widehat{HAD}=\widehat{JDA}\Rightarrow\widehat{JDA}=\widehat{HDI}HAD=JDAJDA=HDI.

Vậy nên \widehat{JDI}=\widehat{HDI}+\widehat{JDH}=\widehat{JDA}+\widehat{FDH}=\widehat{ADH}=90^oJDI=HDI+JDH=JDA+FDH=ADH=90o.
Suy ra DI là tiếp tuyến của đường tròn đường kính AH.
Chứng minh tương tự ta cũng có EI là tiếp tuyến của đường kính AH.

a:

Sửa đề: Chứng minh bốn điểm A,D,H,E cùng nằm trên đường tròn

Xét tứ giác ADHE có

\(\widehat{ADH}+\widehat{AEH}=90^0+90^0=180^0\)

=>ADHE là tứ giác nội tiếp đường tròn đường kính AH

=>Tâm O là trung điểm của AH

b: Gọi giao điểm của AH với BC là M

Xét ΔABC có

BD,CE là đường cao

BD cắt CE tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC tại M

OD=OH

=>ΔODH cân tại O

=>\(\widehat{ODH}=\widehat{OHD}\)

mà \(\widehat{OHD}=\widehat{BHM}\)(hai góc đối đỉnh)

và \(\widehat{BHM}=\widehat{BCD}\left(=90^0-\widehat{DBC}\right)\)

nên \(\widehat{ODH}=\widehat{DCB}\)

ΔDBC vuông tại D có DI là đường trung tuyến

nên DI=IB=IC=BC/2

IB=ID

=>ΔIDB cân tại I

=>\(\widehat{IBD}=\widehat{IDB}\)

\(\widehat{ODI}=\widehat{ODB}+\widehat{IDB}\)

\(=\widehat{IBD}+\widehat{DCB}=90^0\)

=>DI là tiếp tuyến của (O)

8 tháng 6 2021

đề bài thiếu dữ kiện b ơi

8 tháng 6 2021

Mình sửa rồi đó b

loading...  loading...  

k cho mình mình Tl cho

a) Xét tứ giác OCDB có 

\(\widehat{OBD}+\widehat{OBC}=180^0\)

Do đó: OCDB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)